
16

The ps-makeejb Command 16

This chapter introduces the ps-makeejb command, which is central to the PowerTier
development process. You use this command to build EJB source files into a
deployable JAR file. The following describe the ps-makeejb command and how to use
it:

� Understanding the ps-makeejb Command

� Using the ps-makeejb Command

� Developing a Complete Application

� Using the ps-makeejb Command for Iterative Subtasks

Understanding the ps-makeejb Command
The ps-makeejb command acts like the make command. A variety of options allow
you to perform incremental tasks during iterative development. The ps-makeejb
command:

� compiles Java source files

� generates container-adapter code (including the RMI stubs and skeletons that
enable remote communication)

� generates starter deployment descriptors in XML format

� packages the deployment descriptors and compiled EJBs into JAR files

� cleans directories associated with a PowerTier project from the Persistence pantry
303

16 The ps-makeejb Command
To ensure that you are using the correct environment variables, run ps-makeejb from a
PowerTier command prompt. When you run ps-makeejb, you can use the -verbose
option with any primary option to see more detailed information as the command
runs. To see a list of available options, run the ps-makeejb command with no options
specified. For more information, see the Syntax section of “ps-makeejb Command” in
the Class Reference.

The following sections describe how the ps-makeejb command works:

� Specifying Source and Destination Directories

� Compiling and Building

� ps-makeejb and Deployment Descriptors

� ps-makeejb and JAR Files

� Clearing the Pantry

� Primary Options

Specifying Source and Destination Directories
The ps-makeejb command requires an implicit or specified source (to identify files on
which to act) and a destination (to know where to place results). You can allow
ps-makeejb to use default locations for the source and destination, or you can specify
them on the command line.

Default Source
The ps-makeejb command looks for a ps-makeejb.cfg file in the directory from which
it is invoked. The PowerTier code generator (ps-gen) creates a ps-makeejb.cfg text file
when it generates CMP entity bean source files. The ps-makeejb.cfg file specifies the
project and packages for which ps-makeejb builds JAR files or deployment
descriptors.

You can add other package names to this text file so that ps-makeejb includes those
packages in the build. If you are developing only BMP entity beans or session beans,
you can create a ps-makeejb.cfg file to specify source parameters to the ps-makeejb
command.

The first line of the ps-makeejb.cfg file specifies the project. The remaining lines
specify package names. The ps-makeejb.cfg file has the following format:
PROJECT_NAME=projectName
PACKAGE_NAME=packageName
304 PowerTier Tools User Guide

Understanding the ps-makeejb Command
If you include BMP entity beans or session beans to existing packages generated for
CMP entity beans, you do not need to change the ps-makeejb.cfg file. If you add
subdirectories to existing packages, you do not need to change the ps-makeejb.cfg file
either.

Default Destination
The default output destination depends on what you are building with ps-makeejb.
Table 33 shows the default destinations of the results of this command.

Compiling and Building
You can use the ps-makeejb command to build your EJBs from start to finish. The -all
option creates default EJB-standard and PowerTier deployment descriptors (or
updates the pt-jar.xml file if one already exists). It also produces both an EJB-compliant
JAR file and a PowerTier deployment JAR file.

More specifically, ps-makeejb invokes the Java and RMI compilers to create .class files
and container-adapter code. After compilation, ps-makeejb invokes another tool that
combines enterprise bean .class files into a Java Archive (JAR) file with a .jar extension.
If your project includes session beans or BMP entity beans, you place them in the
generation-directory hierarchy, and ps-makeejb compiles, generates container-adapter
code, and JARs them as well. For more information, see the chapters on BMP entity
beans and session beans in the PowerTier Server and EJB Development Guide.

Table 33. Default Destination for ps-makeejb Output

Result Default Location

.class files The Persistence pantry, in a directory hierarchy that mirrors
the package structure.

generated container
source files

A directory hierarchy that mirrors the package structure,
starting from the current directory.

.jar files The current working directory.

.xml files The current working directory.

.ser file The current working directory.
305

16 The ps-makeejb Command
During the development cycle, as you make changes to your application, you do not
need to rebuild the entire application every time. As you work, you can use the
ps-makeejb command to rebuild the packages that correspond to the changes you
have made.

ps-makeejb and Deployment Descriptors
The ps-makeejb command creates an EJB 1.1-compliant XML deployment descriptor
for each project. It can also produce PowerTier deployment descriptors from third-
party EJB deployment descriptors. In addition, you can use this command to modify
and validate existing deployment descriptors, and to migrate EJB 1.0 .des files to EJB
1.1 XML descriptors.

The ps-makeejb command creates default client and server deployment descriptors.
Once you have generated the deployment descriptors, you must edit them to contain
values appropriate to your application, especially if your application includes
business logic in the form of custom methods, BMP entity beans, or session beans. In
particular, ps-makeejb generates only sample entries for some of the PowerTier-
specific sections, which you must edit.

Modifying deployment descriptors is a three-stage process:

1. Extract the descriptor files from the application’s JAR file using -editDD.

2. Modify the extracted descriptor files either with a text editor or using -createDD.

3. Place the edited descriptor files into the application’s JAR file, replacing previous
versions, using -updateDD.

If you already have the XML files, you can skip the first stage. If you are an application
deployer and have only the JAR files, you must extract the deployment descriptors
before you can make any changes.

It is recommended that you run ps-makeejb with the -validateDD option after
modifying deployment descriptors.

Sometimes, parts of your application may be developed separately from each other, or
you acquire components from third parties. In this case, you must combine the parts to
form a complete application. You can use ps-makeejb with the -mergeDD option to
combine the deployment descriptors. Then use the -ejbJar and -ptJar options to create
deployable JAR files.
306 PowerTier Tools User Guide

Understanding the ps-makeejb Command
Serializing Client Deployment Descriptors
Client deployment descriptors (application-client.xml and pt-application-client.xml)
are not included in any JAR files, not even client JAR files. Instead, you should use the
-serializeClientDD option of ps-makeejb to serialize client deployment descriptors.
Using serialized versions of client deployment descriptors improves performance and
provides a more efficient client program. Without using serialized deployment
descriptors, a client program would need to include an XML parser.

It is recommended that you run ps-makeejb with the -validateClientDD option after
modifying client deployment descriptors.

ps-makeejb and JAR Files
You can produce three types of JAR files using the ps-makeejb command: EJB-
standard, PowerTier deployment, and client.

� An EJB-standard JAR contains the files mandated by the EJB specification: it
includes bean and primary-key class implementations and deployment
descriptors, and is ready for further development.

� A PowerTier deployment JAR file contains all the files that are in an EJB-standard
JAR file, plus the RMI stubs and skeletons and container-adapter code and XML
deployment descriptors, and is ready for deployment to a PowerTier server.

� The client-side JAR is a subset of the PowerTier deployment JAR file. It contains
the Java classes and interfaces that client programs will invoke to access the beans.
This includes the remote and home interfaces, the primary-key class, and client-
side stubs. However, it does not contain the bean implementations, deployment
descriptors, or server-side skeletons.

The PROJECT_NAME entry from the ps-makeejb.cfg file determines the name of the
EJB JAR file and the PowerTier JAR file – for example ATM.jar and ATM-pt.jar.

To deploy your application, copy the generated PowerTier deployment JAR file to the
pantry (which must be included in the CLASSPATH).

Clearing the Pantry
The Persistence pantry is the target directory for compiled EJB class files. This is where
the PowerTier build process compiled the EJB source and the RMI stubs and skeletons
(which allow remote invocation). The pantry is also the source directory for the
components that go into the JAR file.
307

16 The ps-makeejb Command
As you develop your application, you may find that the pantry contains old files with
the same names as new files that you are creating. You can use ps-makeejb to remove
the existing packages and files from the pantry to ensure a clean build. It is also a good
idea to clean the pantry after changing your object model or debugging, before you
rebuild your application.

The ps-makeejb command provides three options to remove old files and directories
from the Persistence pantry: -clean, -cleanAll, and -cleanCntr. For more information,
see “Using the ps-makeejb Command” on page 18.

When you build your application, if you get an error message that mentions
“unimplemented” methods – and you know your source files are correct – use
ps-makeejb to clean out your pantry and then try rebuilding.

Primary Options
The ps-makeejb command has a set of primary options that specify how you want to
use the command. Table 34 lists these options and describes what each one does. You
can use additional options with many of these primary options, to further control how
the command operates.

Table 34. Primary Options for ps-makeejb

Option Description

-all Builds an entire project from start to finish. The -all option
combines the processing of the -createDD, -ejbJar, and
-ptJar options.

-clean [packageName ...] Removes the subdirectories and files in the specified
packages, from the pantry.

-cleanAll Removes the entire contents of the pantry – all
subdirectories and files.

-cleanCntr Removes all of the compiled classes that represent
container-specific code associated with the packages in the
current project.

-clientJar ptJar Builds a client-side JAR file from the PowerTier
deployment JAR. The ptJar parameter must provide the
absolute path to the PowerTier JAR file.

-createClientDD Creates template J2EE and PowerTier client descriptor files.
308 PowerTier Tools User Guide

Understanding the ps-makeejb Command
-createDD [-noRecompile] Creates default ejb-jar.xml and pt-jar.xml files for the
current project, or updates the pt-jar.xml file if it already
exists. The ps-gen command creates a default pt-jar.xml file
with basic information about your CMP entity beans.

You can use the -noRecompile switch if you know your
.class files are up-to-date.

-editDD jar [...] Unjars the XML deployment descriptors from an EJB-
standard or PowerTier deployment JAR file into the current
directory. This enables you to edit the XML files from a JAR
file.

-ejbJar [-noRecompile] Builds an EJB-standard JAR file.

-genImpls
beanClassName [...]

Generates container-adapter code from one or more
specified beanClassName arguments.

-mergeDD jarFile [...] This option accepts a list of JAR files (EJB or PT JARs) and
produces combined EJB and PowerTier deployment
descriptors in the files ejb-jar.xml and pt-jar.xml.

-ptJar ejbJar Builds a PowerTier deployment JAR file from the specified
EJB-standard JAR.

-serializeClientDD Starts by validating the J2EE (required) and PowerTier
(optional) client descriptors and reporting any validation
errors. If no errors are detected, ps-makeejb serializes the
resulting descriptor objects to the application-client.ser file.

-updateDD jar [...] Adds the updated XML files to the specified jar file.
Assumes the updated XML files are in the current
directory, unless you use the -xmlDir option.

-validateDD [ptcFilePath] Use this option to validate an ejb-jar.xml or a pt-jar.xml
deployment descriptor or both. If you specify the server
configuration file (ptcFilePath) as an argument, the
-validateDD option will perform a more comprehensive
validation of your configuration, including security.

-validateClientDD Provides standalone validation of the
application-client.xml and pt-application-client.xml files.
By default, ps-makeejb looks for these files in the current
directory. You can specify a different location for both files
using the -xmlDir option.

Table 34. Primary Options for ps-makeejb (Continued)

Option Description
309

16 The ps-makeejb Command
Using the ps-makeejb Command
The following sections describe the ps-makeejb command and how to use it to
perform various development tasks:

� Specifying Alternate Source and Destination Directories

� Compiling and Building

� Rebuilding Parts of an Application

� Clearing the Pantry

� ps-makeejb and Deployment Descriptors

� ps-makeejb and JAR Files

Specifying Alternate Source and Destination Directories
The ps-makeejb command compiles .class files into a package hierarchy under the
directory defined by the PERSISTENCE_PANTRY environment variable. The files in the
pantry become the source files when ps-makeejb creates JAR files.

The -all, -createDD, -ejbJar, -mergeDD, and -clientJar options of the ps-makeejb
command look for a ps-makeejb.cfg file in the current directory to determine the
source projects and packages on which to operate. You can use the following options
to specify alternate source and destination locations:

-clientOutputDir directoryPath Specifies the destination of serialized client
deployment descriptors (.ser files).

-outputJarPath jarFilePath Specifies the destination of the JAR file.

-packageName packageName Specifies the packages on which to operate. If you
specify more than one package, use the full path
name for each package and separate the entries with
spaces.

-projectName projectName Specifies the project on which to operate.

-xmlDir directoryPath Specifies the location of the XML deployment
descriptors.
310 PowerTier Tools User Guide

Using the ps-makeejb Command
Building an Entire Application
You can use the ps-makeejb command to build your EJB components, from start to
finish. The ps-makeejb.cfg file (generated by ps-gen or created with a text editor)
specifies the source packages to build.

The -all option compiles the Java source files in the packages listed in the
ps-makeejb.cfg file (or specified with the -projectName and -packageName options),
creates or updates deployment descriptors in the current directory, and packages the
results into both an EJB-compliant JAR file and a PowerTier deployment JAR file, also
in the current directory. Use this option when you do not need to edit the deployment
descriptor files before testing your application.

The -all option combines the processing of the -createDD, -ejbJar, and -ptJar options.
For more information about these options, see “ps-makeejb and Deployment
Descriptors” on page 306 and “ps-makeejb and JAR Files” on page 307.

To use the -all option, follow these steps:

1. Open a PowerTier command prompt, by clicking Start�Programs�PowerTier for
J2EE for J2EE�Tools�PowerTier Command Prompt.

2. From the PowerTier command prompt, change directories to the location of your
ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\atm\ejb

3. Invoke ps-makeejb to compile your beans and build a JAR file ready to deploy to
the PowerTier server:
ps-makeejb -all

4. To deploy your application, copy the atm-pt.jar file to the pantry. For example:
cp ATM-pt.jar %PERSISTENCE_PANTRY%

Passing Arguments to the Java and RMI Compilers
When you use ps-makeejb to compile project files, you can specify arguments to pass
directly to the Java compiler or the RMI compiler. For example:
ps-makeejb -javaCompilerArgs "-g -verbose" -all
ps-makeejb -rmiCompilerArgs "-nostub -noskel" -all

You can use the -javaCompilerArgs option with -all, -createDD, -ejbJar, and -ptJar. You
can use the -rmiCompilerArgs option with -all and -ptJar. When you use either the
-javaCompilerArgs or the -rmiCompilerArgs option to pass arguments to a compiler,
separate the arguments with spaces, and enclose the entire list in double quotation
marks.
311

16 The ps-makeejb Command
Rebuilding Parts of an Application
During the development cycle, as you make changes to your application, you do not
need to rebuild the entire application every time. As you work, you can use the
ps-makeejb command to rebuild the packages that correspond to the changes you
have made.

Rebuilding parts of an application can include any of the following tasks:

� Building Specific Packages

� Adding Business Logic

� Preventing Recompilation

� Retaining Existing Source Files

Building Specific Packages
To recompile and rebuild specific packages, use the -all option, with the -projectName
and -packageName options, to specify which packages to rebuild. For example:

ps-makeejb -all -projectName HRapp -packageName HR.resources HR.departments

Specifying these options on the command line overrides the values in the
ps-makeejb.cfg file.

When you specify packages in this way, ps-makeejb creates a new project with only the
packages you list and their sub-packages. Any packages you do not list are excluded
from the JAR file.

Adding Business Logic
The -all option is useful if your project contains no custom code. If you are writing
business logic – in the form of BMP entity beans, session beans, or custom methods in
CMP entity beans – you should not use this option. Instead, you should run the
ps-makeejb -createDD command to create deployment descriptors, and then use the
-ejbJar, -ptJar, and -clientJar options to build the remaining pieces of your project.

For more information, see “Creating Deployment Descriptors” on page 315 and
“ps-makeejb and JAR Files” on page 307.
312 PowerTier Tools User Guide

Using the ps-makeejb Command
Preventing Recompilation
If you have not changed your source files since the last time you compiled them, and
you only want to rebuild the deployment descriptors and JAR files, you can use the
-noRecompile option to prevent recompiling. If you use this option, ensure that the
directory – most likely the pantry containing your compiled .class files – is in your
CLASSPATH.

You can use the -noRecompile option with the -all, -createDD, and -ejbJar options.

Retaining Existing Source Files
By default, ps-makeejb deletes generated source files when you rebuild your project. If
you want to avoid this, use the -keepgenerated option. This option retains all source
files generated by ps-makeejb, rather than deleting or regenerating them. You can also
use the -keepgenerated option with -all and -ptJar.

Clearing the Pantry
The ps-makeejb command provides three options to remove old files and directories
from the Persistence pantry to ensure a clean build: -clean, -cleanAll, and -cleanCntr.
The following sections describe these options.

Removing Compiled Code
Use the -clean option to remove the package subdirectories, and compiled .class files,
associated with the current project from the pantry. You can also list specific packages
to clear, rather than all of the files for the entire project.

To remove compiled code from the pantry:

1. From a PowerTier command prompt, specify one or more packages to remove
from the pantry. For example:
ps-makeejb -clean HR.departments HR.scheduling

2. At the prompt, answer yes (Y) to confirm that you want to remove the packages.
You can use the -force option to disable the confirmation prompt.
313

16 The ps-makeejb Command
Clearing the Entire Pantry
Use the -cleanAll option to remove all subdirectories and compiled files from the
pantry. To remove everything from the PERSISTENCE_PANTRY:

1. From a PowerTier command prompt, enter the following command:
ps-makeejb -cleanAll

2. At the prompt, answer yes (Y) to confirm that you want to remove the files.
You can use the -force option to disable the confirmation prompt.

Removing Container-Adapter Code
Use the -cleanCntr option to remove all of the compiled classes that represent
container-specific code associated with the packages in the current project. This option
removes only the container-adapter code (the RMI/IIOP stubs and skeletons).

To clean the container-adapter code from all the packages specified in the current
ps-makeejb.cfg file:

1. From a PowerTier command prompt, enter the following command:
ps-makeejb -cleanCntr

You can also list the names of specific packages whose container-adapter code to
remove.

2. At the prompt, answer yes (Y) to confirm that you want to remove the files.
You can use the -force option to disable the confirmation prompt.

Working with Deployment Descriptors
The ps-makeejb command creates default EJB 1.1-compliant and PowerTier-specific
deployment descriptors for each project. In addition, it provides a number of options
that enable you to modify and validate existing PowerTier-specific and client-side
deployment descriptors, and to migrate EJB 1.0 .des files to EJB 1.1 descriptors. The
following sections describe these options:

� Creating Deployment Descriptors

� Modifying Deployment Descriptors

� Merging Beans from Different Projects

� Validating Deployment Descriptors

� Serializing Client Deployment Descriptors
314 PowerTier Tools User Guide

Using the ps-makeejb Command
When ps-makeejb makes changes to existing XML deployment descriptors, it creates
backup copies of the descriptor files in the same directory as the originals. These
backup files are named ejb-jar_old.xml and pt-jar_old.xml.

Creating Deployment Descriptors
The ps-makeejb command has options to create default client and server deployment
descriptors. You must edit the generated XML files to provide specific information
about your application.

Creating Server-Side Deployment Descriptors

The -createDD option creates default EJB-standard and PowerTier-specific
deployment descriptors for the current project (or updates them if either one already
exists). This option reads the ps-makeejb.cfg file in the current directory, and uses the
PACKAGE_NAME entries to determine which beans will be described in the
deployment descriptors. The resulting ejb-jar.xml and pt-jar.xml files contain entries
only for beans that are part of the specified packages and their sub-packages.

If you are developing BMP entity beans or session beans or deploying a JAR at
production time, the ps-makeejb.cfg file may be unavailable. In this case, you should
specify the source using the -packageName and -projectName options, or create a
ps-makeejb.cfg file containing the project and package names.

To create deployment descriptors with default values for your application:

1. If your project contains CMP entity beans, enter the following command to
generate code:
ps-gen SampleApp.per

This command generates a partial pt-jar.xml file with ps-entity elements for your
CMP entity beans.

2. Change to the directory that contains your project file. For example:
cd %PERSISTENCE_HOME%\SampleApp\ejb

3. Run ps-makeejb to generate default deployment descriptors for the specified
package. For example:
ps-makeejb -createDD -packageName com.persistence.example -projectName
SampleApp

This command generates the ejb-jar.xml file, and updates the pt-jar.xml file (if one
exists), with entries for each enterprise bean in the com.persistence.example
package.
315

16 The ps-makeejb Command
4. Open the generated file ejb-jar.xml and change the value of the trans-attribute
element for each of your custom methods if necessary. For more information about
transaction attributes, see the chapters on transactions in the PowerTier Server and
EJB Development Guide.

The -createDD option also compiles the .class files in the Persistence pantry. If you
have not changed your source files since the last time you compiled them, you can use
the -noRecompile option to prevent recompiling. If you use this option, ensure that the
directory containing your compiled .class files is in your CLASSPATH.

The ps-makeejb command assumes that your enterprise beans use one of the naming
conventions in Table 35when it generates entries in the EJB-standard deployment
descriptor.

If the custom enterprise beans in your project do not follow either of these naming
conventions, you just specify the names using the ejb-class, remote, and home
elements in the EJB-standard deployment descriptor. After modifying the deployment
descriptor, run ps-makeejb -createDD again.

Specifying Compiler Arguments

When you use the -createDD option, you can pass arguments directly to the Java
compiler. For more information, see “Passing Arguments to the Java and RMI
Compilers” on page 311.

Table 35. Naming Conventions

Source File Type Default Name (option 1) Default Name (option 2)

remote interface Class.java ClassRemote.java

bean class ClassBean.java Class.java

home interface ClassHome.java ClassHome.java
316 PowerTier Tools User Guide

Using the ps-makeejb Command
Additional Deployment Descriptor Generation Options

You can use the following options to modify how ps-makeejb creates the default
deployment descriptors:

Creating Client-Side Deployment Descriptors

The -createClientDD option creates template J2EE and PowerTier client descriptor
files. After you generate the default files, you must populate them with relevant
information about your application.

To create client-side deployment descriptors:

1. From a PowerTier command prompt, change to the directory containing your
ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\atm\ejb

2. Enter the following command to create default client-side deployment descriptors:
ps-makeejb -createClientDD

3. Use the options in the following table to override the default destination, or the
default names, for the generated files:

-groupTxGen Groups all methods of the same bean that have the same
transaction attribute type into one container-transaction
element. This provides a more compact ejb-jar.xml file. (By
default, ps-makeejb generates one container-transaction
element per method, to simplify editing the trans-attribute
element for each method.)

-maxGen Generates fully-expended method-permission entries in the
pt-jar.xml file. By default, these entries are commented out.

For more information about the security entries in a PowerTier
deployment descriptor, see “pt-jar.xml File” in the Class
Reference.

-xmlDir By default, ps-makeejb creates the client descriptor files in
the current working directory. Use the -xmlDir option
specify a different location.
317

16 The ps-makeejb Command
Modifying Deployment Descriptors
To modify deployment descriptors, you must extract the XML descriptor files from the
application’s JAR file so that you can edit them. After you make your changes, you
must replace the edited files in the application’s JAR file.

Use the -editDD option to unjar the contents of an EJB-standard or PowerTier
deployment JAR file into the current directory. This enables you to edit the XML files
in the JAR file.

After editing the descriptors, use the -updateDD option to update the XML files in the
original JAR file. This option looks for XML files in the current directory, or in the
directory specified by the -xmlDir option. Then it creates a JAR file with the newly-
updated XML files. This JAR file can be an EJB-standard or PowerTier-specific JAR file.

To update deployment descriptors in a PowerTier JAR file:

1. Change directories to the location of the ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\ATM\ejb

2. Run ps-makeejb to add the modified deployment descriptor to the PowerTier JAR
file. For example:
ps-makeejb -updateDD ATM-pt.jar

You can use the -xmlDir option to specify a different directory for the extracted
XML files.

Note: You may modify the EJB-standard and PowerTier-specific deployment
descriptors after the container-adapter code has been built and packaged in the
PowerTier-specific JAR file. However, if you modify these descriptors after
packaging, you can change only runtime information, such as the security
elements or the JNDI bean environment elements. If you change information
that affects the container-adapter code, such as transaction attributes, you must
run the ps-makeejb -ptJar command again.

-applClientXml The default J2EE application client descriptor is named
application-client.xml. Use the -applClientXml option to
specify a different name for your EJB client descriptor.

-ptApplClientXml The default name of the PowerTier-specific application
client descriptor is pt-application-client.xml. Use the
-ptApplClientXml option to specify a different name for your
PowerTier client descriptor.
318 PowerTier Tools User Guide

Using the ps-makeejb Command
3. Copy the new PowerTier JAR file (in this case, ATM-pt.jar) to the pantry and
overwrite the JAR file from the basic application. For example, from the ATM\ejb
directory:
cp ATM-pt.jar %PERSISTENCE_HOME%\pantry\ATM-pt.jar

When you use -updateDD, ps-makeejb reports an error if it cannot find an ejb-jar.xml
file, or if you specify a PowerTier JAR file and it cannot find a pt-jar.xml file . However,
if you specify an EJB JAR file and no pt-jar.xml file is found, no error will be reported.

Merging Beans from Different Projects
If parts of your application have been developed separately from each other, you must
combine the parts to form a complete application. You can use ps-makeejb with the
-mergeDD option to combine the separate JAR files and deployment descriptors into a
single deployable JAR file.

The -mergeDD option accepts a list of JAR files (EJB-standard or PowerTier-specific
JARs) and produces ejb-jar.xml and pt-jar.xml files that contain entries combined from
the original deployment descriptors.

To merge individual JAR files:

1. Place the JAR files to combine into a single directory (or specify absolute or
relative path names when you enter the command). If the JAR files are in the
current directory, enter the following command:
ps-makeejb -mergeDD jarFile1 jarFile2 jarFile3

ps-makeejb unjars the specified JAR files to the pantry, and places the resulting
merged XML files either in the current directory or in the location specified by the
-xmlDir option.

2. Use ps-makeejb -ejbJar and ps-makeejb -ptJar to build EJB-standard and
PowerTier JAR files containing the newly created XML descriptors.

3. To deploy or test your application, copy the resulting app-pt.jar file to the pantry.

Validating Deployment Descriptors
You can use ps-makeejb to validate both server-side deployment descriptors
(ejb-jar.xml and pt-jar.xml) and client-side deployment descriptors
(application-client.xml and pt-application-client.xml).
319

16 The ps-makeejb Command
Server-Side Deployment Descriptors

Use the -validateDD option to validate either an ejb-jar.xml or a pt-jar.xml deployment
descriptor or both. You should run this option on any XML file whose text you have
edited directly. When you use the -validateDD option, do not use any options with it
except -xmlDir. For example:

ps-makeejb -validateDD -xmlDir %PERSISTENCE_HOME%\atm\XML-descriptors

When you use -validateDD, you can specify your server configuration (.ptc) file as an
optional argument. This enables ps-makeejb to perform a more comprehensive
validation of your configuration. It does so by validating the XML files against the .ptc
file, and against the user-to-role and user-account configuration files that are described
in the .ptc file.

For a detailed list of what ps-makeejb validates, see the validation appendix in the
PowerTier Tools User Guide.

Client-Side Deployment Descriptors

Use the -validateClientDD option to perform standalone validation of your
application-client.xml and pt-application-client.xml files. By default, ps-makeejb looks
for these files in the current directory. You can specify a different location for both files
using the -xmlDir option. For example:

ps-makeejb -validateClientDD -xmlDir \myProject\atm\XML-descriptors

By default, the J2EE application client descriptor is application-client.xml. You can
specify a different name by using the -applClientXml option.

By default, the name of the PowerTier-specific application client descriptor is
pt-application-client.xml. You can specify a different name by using the
-ptApplClientXml option.

If ps-makeejb cannot find any J2EE client descriptors, it reports an error. The
PowerTier-specific descriptor is optional. If you specify a PowerTier descriptor using
the -ptApplClientXml option and ps-makeejb cannot find the file, it reports an error. As
it validates the J2EE and optional PowerTier descriptor, ps-makeejb reports any errors.

Serializing Client Deployment Descriptors
Client deployment descriptors are not included in any JAR files. Instead, you should
use the -validateClientDD option of ps-makeejb to validate and the -serializeClientDD
option to serialize client deployment descriptors. Using serialized client deployment
descriptors eliminates the need to include an XML parser in your client environment.
320 PowerTier Tools User Guide

Using the ps-makeejb Command
You must use the ps.client.descriptor property value to specify the location of the
resulting .ser file when deploying your application client. Application developers are
responsible for managing the client deployment descriptors: ps-makeejb does not
include an equivalent to the -editDD option for client-side deployment descriptors.

The -serializeClientDD option starts by validating the J2EE (required) and PowerTier
(optional) client descriptors and reporting any validation errors. If no errors are
detected, ps-makeejb serializes the resulting descriptor objects to the
application-client.ser file.

You can use the -applClientXml and -ptApplClientXml options to specify client
deployment descriptors that do not use the default names. Those defaults are
application-client.xml and pt-application-client.xml, respectively.

The default name for the serialized output file is the name of the J2EE application
client XML file, with the extension .ser. By default, ps-makeejb creates this file in the
current directory. You can use the -applClientSer option to specify another name, and
the -clientOutputDir option to specify another location.

To create a serialized client deployment descriptor to deploy with your client program:

1. From a PowerTier command prompt, enter the following command:
ps-makeejb -createClientDD

This command creates default client deployment descriptors called
application-client.xml and pt-application-client.xml. For more information about
these files, see the corresponding pages in the “Configuration Files” part of the
Class Reference.

2. Using a text editor, make any necessary changes to the deployment descriptor
files.

3. Enter the following command to validate the modified deployment descriptors:
ps-makeejb -validateClientDD

The ps-makeejb command reports any errors it encounters.

4. Enter the following command to serialize the client deployment descriptor files:
ps-makeejb -serializeClientDD

This command produces a serialized deployment descriptor that combines the
contents of both application-client.xml and pt-application-client.xml into the file
application-client.ser.

5. Enter the following command to deploy the serialized client deployment
descriptors:
java -D ps.client.descriptor=myApp\myClient\application-client.ser
321

16 The ps-makeejb Command
Creating JAR Files
You can produce three types of JAR files using the ps-makeejb command: EJB-
standard, PowerTier deployment, and client.

The PROJECT_NAME entry from the ps-makeejb.cfg file determines the name of the
EJB JAR file and the PowerTier JAR file – for example ATM.jar and ATM-pt.jar. By
default, the client JAR for the same project is ATM-client.jar. You can specify a different
name for your client JAR file in the ejb-client-jar element of the EJB deployment
descriptor.

When ps-makeejb makes changes to existing JAR files, it creates backup copies of the
descriptor files in the same directory as the originals. These backup files are named
jarFileName_old.jar and jarFileName-pt_old.jar.

Creating an EJB-Standard JAR File
The -ejbJar option builds an EJB-standard JAR file. By default, the ps-makeejb
command creates the JAR in the current directory. To specify a different directory, use
the -outputJarPath option.

Assuming that your Java classes are up-to-date, and your deployment descriptors are
correct and complete, follow these steps to build your application’s JAR file:

1. From a PowerTier command prompt, change to the directory containing your
ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\atm\ejb

2. Enter the following command to build the EJB-standard JAR file ATM.jar:
ps-makeejb -ejbJar

Note: This EJB-standard JAR file and its contents fully comply with the EJB
specification, although the beans it contains will only work in the PowerTier
container.

If you are developing BMP entity beans or session beans, or deploying at production
time, there may be no ps-makeejb.cfg file available. In this case, you should specify the
inputs using the -packageName and -projectName options.

If you have not changed your source files since the last time you compiled them, you
can use the -noRecompile option to prevent recompiling. If you use this option, ensure
that the directory containing your compiled .class files is in your CLASSPATH. By
default this is the directory defined by the PERSISTENCE_PANTRY environment
variable.
322 PowerTier Tools User Guide

Using the ps-makeejb Command
Specifying Compiler Arguments

When you use the -ejbJar option, you can pass arguments directly to the Java compiler.
For more information, see “Passing Arguments to the Java and RMI Compilers” on
page 311.

Creating a PowerTier Deployment JAR File
The -ptJar option builds a PowerTier deployment JAR file from an EJB-standard JAR
file. You must specify the absolute path to the source JAR file. When you build the
PowerTier JAR file, the PowerTier tools generate the container-adapter code (the RMI
stubs and skeletons) for your custom methods, and compile your additions together
with the rest of the project.

To create a PowerTier deployment JAR file:

1. From a PowerTier command prompt, change to the directory containing your
ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\atm\ejb

2. Enter the following command to build the PowerTier JAR file ATM-pt.jar:
ps-makeejb -ptJar ATM.jar

3. To test your application, copy the PowerTier JAR file to the pantry. For example:
cp ATM-pt.jar %PERSISTENCE_PANTRY%

Adding Session Beans or BMP Beans

When you add session beans or BMP beans to your application, you must generate
container-adapter and RMI stubs and skeletons and add them to the rest of the project
in your PowerTier JAR file. To do this, run the ps-makeejb command with the -ptJar
option.

When your project includes BMP entity beans or session beans, you must add them
before you generate deployment descriptors. You must edit the default deployment
descriptors and include the class files for these beans in your JAR file. For more
information, see the chapters on BMP entity beans and session beans in the PowerTier
Server and EJB Development Guide.

Specifying Compiler Arguments

When you use the -ptJar option, you can pass arguments to both the Java and the RMI
compilers. For more information, see “Passing Arguments to the Java and RMI
Compilers” on page 311
323

16 The ps-makeejb Command
Creating a Client JAR File
The -clientJar option builds a client-side JAR file from the PowerTier deployment JAR.
The client-side JAR file contains the class files that clients use to access the enterprise
beans specified in ejb-jar.xml.

To build a client-side JAR file:

1. From a PowerTier command prompt, change to the directory containing your
ps-makeejb.cfg file. For example:
cd %PERSISTENCE_HOME%\atm\ejb

2. Enter the following command to build the client JAR file ATM-client.jar:
ps-makeejb -clientJar ATM-pt.jar

The ptJar parameter must provide the absolute path.

This option uses the PACKAGE_NAME entries from the ps-makeejb.cfg file to determine
which beans from the ptJar file to include in the client JAR file. Only beans that are part
of the specified packages and their sub-packages are included. You can also use the
-packageName and -projectName options to specify which packages to include.
324 PowerTier Tools User Guide

	The ps�makeejb Command
	Understanding the ps�makeejb Command
	Specifying Source and Destination Directories
	Default Source
	Default Destination

	Compiling and Building
	ps�makeejb and Deployment Descriptors
	Serializing Client Deployment Descriptors

	ps�makeejb and JAR Files
	Clearing the Pantry
	Primary Options

	Using the ps�makeejb Command
	Specifying Alternate Source and Destination Directories
	Building an Entire Application
	Passing Arguments to the Java and RMI Compilers

	Rebuilding Parts of an Application
	Building Specific Packages
	Adding Business Logic
	Preventing Recompilation
	Retaining Existing Source Files

	Clearing the Pantry
	Removing Compiled Code
	Clearing the Entire Pantry
	Removing Container-Adapter Code

	Working with Deployment Descriptors
	Creating Deployment Descriptors
	Modifying Deployment Descriptors
	Merging Beans from Different Projects
	Validating Deployment Descriptors
	Serializing Client Deployment Descriptors

	Creating JAR Files
	Creating an EJB-Standard JAR File
	Creating a PowerTier Deployment JAR File
	Creating a Client JAR File

	Developing a Complete Application
	Generating Entity Beans
	Writing Custom Code
	Deploying and Running the Application

	Using the ps�makeejb Command for Iterative Subtasks

