
Management Console User’s Guide 27

3 Creating Data Descriptor Files

Data descriptor files define the relationship between physical data fields in source
or target application data and the logical ATS definition in a context map (CXM)
file. In the ATS definition, each data element corresponds to an attribute of a
logical ATS entity. Therefore, the data descriptor file syntax uses XML tags called
Entity and Attribute to capture the relationship between application data fields
and logical data elements.

Data descriptor files provide the ATS Manager component of the Interoperability
Server with information about the internal structure of application data files and
the correct mapping between data file fields and the data elements in the
application schema.

During an interoperability run, the ATS Manager uses source data descriptor files
to import application data into source ATS instances in the internal work space.
At the end of the run, the ATS Manager uses target data descriptor files to export
data from a target ATS instance in the internal work space into a file with target
data in the correct format.

There are two types of descriptor files: one for application data in XML format,
and the other for application data in delimited flat files. Each is in XML format;
while similar in structure they have different DTDs.

This discussion covers the following topics:

Analyzing and Describing XML Data

Analyzing and Describing Flat-file Data

Each of these sections starts with sample data and describes how to create a data
descriptor for that sample data. You can use any data descriptor file for either
source application data or target application data. For source data, the ATS
Manager uses the descriptor information to parse source data files on import. For
target data, the ATS Manager uses the descriptor information to construct target
data files on export.

3 Creating Data Descriptor Files

28 Management Console User’s Guide

Analyzing and Describing XML Data
This section describes the following steps for creating a data descriptor for XML
data:

Understanding the Data Formats

Identifying the Entities

Identifying the Attributes for Each Entity

For a complete description of the syntax of XML descriptors, see “Data
Descriptors for XML Data” on page 69.

Understanding the Data Formats
Example 1 shows sample data from an accounting system. The rest of this section
explains how to create a data descriptor file that describes the format of this data.

Example 1: Sample XML Data
<userData>

<users>
<employee>

<lastName>Johnson</lastName>
<firstName>Lee</firstName>
<employeeID>7892213</employeeID>
<costCenterInfo>

<costCenterCode>043-032</costCenterCode>
<costCenterDescr>Operations</costCenterDescr>

</costCenterInfo>
</employee>
<user>

<employeeID>7892213</employeeID>
<userName>ljohnson1</userName>
<roleCode>483</roleCode>
<createDate>

<day>29</day>
<month>03</month>
<year>2001</year>

</createDate>
</user>

</users>
</userData>

The sample data contains two entities: employee and user. Most of the attributes
of each entity are subelements of that entity. Each entity also has attributes that
are more deeply nested, grouped together in another element:

The employee entity has an element called costCenterInfo that contains two
attributes, costCenterCode and costCenterDescr.

The user entity has an element called createDate that contains three attributes,
the day, month, and year parts of the date.

Analyzing and Describing XML Data

Management Console User’s Guide 29

Using Tag Paths
To describe the location of the XML element that corresponds to a particular
entity or attribute, you provide a tag path. The tag path looks like a file path, and
lists the levels of nesting you must traverse to find that element.

For example, in Example 1, the tag path to the employee element is:

userData/users/employee

In some application data files, the data for attributes corresponding to an entity is
not immediately inside the element for that entity, but is instead nested more
deeply inside that element. For example, consider the employee data in
Example 1:

<userData>
<users>

<employee>
<lastName>Johnson</lastName>
<firstName>Lee</firstName>
<employeeID>7892213</employeeID>
<costCenterInfo>

<costCenterCode>043-032</costCenterCode>
<costCenterDescr>Operations</costCenterDescr>

</costCenterInfo>
</employee>
...

</users>
</userData>

In this example the costCenterCode and costCenterDescr appear inside the
costCenterInfo element, one level more deeply nested than the other attributes of
employee.

You can use a special character, #, in your tag paths to preserve the nesting when
the ATS Manager exports (serializes) employee data. In other words, if you set the
tag paths as follows:

Then the exported data would look like:

<userData>
<users>

<employee>
<lastName>Johnson</lastName>
<firstName>Lee</firstName>
<employeeID>7892213</employeeID>
<costCenterInfo>

<costCenterCode>043-032</costCenterCode>
</costCenterInfo>

costCenterCode userData/users/employee/costCenterInfo/costCenterCode

costCenterDescr userData/users/employee/costCenterInfo/costCenterDescr

3 Creating Data Descriptor Files

30 Management Console User’s Guide

<costCenterInfo>
<costCenterDescr>Operations</costCenterDescr>

</costCenterInfo>
</employee>
...

</users>
</userData>

Using the # in the tag path instead, you would end up with:

This format would combine the data for costCenterCode and costCenterDescr into
a single costCenterInfo element.

Identifying the Entities
The format for data descriptors for XML data contains a tag called Entity that
describes each logical entity in your data structure. The accounting system
contains two entities, employee and user.

For each of these entities, you start by specifying where that entity appears in the
ATS definition for your context map and how to identify records associated with
that entity. For each Entity element, you also supply the following information:

The name of the entity as it appears in the ATS definition in the context map
file you are using. To specify this, use the name attribute of the Entity element.

Where to find the beginning of this entity within the XML structure. To
specify this, you add an EntityLocation element inside the Entity element with
a tagPath attribute.

The tag path shows how to navigate the hierarchy of XML tags. It looks like a
file path. For example, in the accounting example, the employee entity is a
sub-element of users, which is a sub-element of userData. Therefore, the tag
path to find employee is userData/users/employee.

Where to find the data for this entity. To do this you add an EntityInstance
element inside the Entity element. In this element, you add two kinds of
information:

An EntityInstanceLocation element with a tagPath attribute to point to the
beginning of the record of data.
A separate Attribute element for each attribute of this entity. For more
information, see “Identifying the Attributes for Each Entity” on page 31.

costCenterCode userData/users/employee/costCenterInfo#costCenterCode

costCenterDescr userData/users/employee/costCenterInfo#costCenterDescr

Analyzing and Describing XML Data

Management Console User’s Guide 31

Therefore, the following XML code identifies the entities in the accounting system
data:

<!DOCTYPE XMLDescriptor SYSTEM "xmldescriptor.dtd">
<XMLDescriptor>

<Entity name="employee">
<EntityLocation tagPath="userData/users/employee" />
<EntityInstance>

<EntityInstanceLocation
tagPath="userData/users/employee" />
...

</EntityInstance>
</Entity>
<Entity name="user">

<EntityLocation tagPath="userData/users/user" />
<EntityInstance>

<EntityInstanceLocation
tagPath="userData/users/user" />
...

</EntityInstance>
</Entity>

</XMLDescriptor>

The next step is to fill in information about where to find the data for each
attribute of each entity.

Identifying the Attributes for Each Entity
Inside each EntityInstance element, you must add an Attribute element for each
attribute of the entity with the name of the corresponding data element in the ATS
definition. In addition, inside each Attribute element you place an
AttributeLocation element with the tag path to the location of that attribute in the
XML data file. For information about tag paths and the special character #, see
“Using Tag Paths” on page 29.

Describing the Attributes of the employee Entity
The Attribute elements for lastName, firstName, and employeeID are:

<Attribute name="lastName">
<AttributeLocation

tagPath="userData/users/employee/lastName" />
</Attribute>
<Attribute name=firstName">

<AttributeLocation
tagPath="userData/users/employee/firstName" />

</Attribute>
<Attribute name="employeeID">

<AttributeLocation
tagPath="userData/users/employee/employeeID" />

</Attribute>

3 Creating Data Descriptor Files

32 Management Console User’s Guide

Because the costCenterCode and costCenterDescr are nested inside the
costCenterInfo element, you can use the special character # in the tag path for
these attributes:

<Attribute name="costCenterCode">
<AttributeLocation

tagPath="userData/users/employee/costCenterInfo#costCenterCode" />
</Attribute>
<Attribute name="costCenterDescr">

<AttributeLocation
tagPath="userData/users/employee/costCenterInfo#costCenterDescr" />

</Attribute>

Describing the Attributes of the user Entity
The Attribute elements for employeeID, userName, and roleCode are:

<Attribute name="employeeID">
<AttributeLocation

tagPath="userData/users/user/employeeID" />
</Attribute>
<Attribute name=userName">

<AttributeLocation
tagPath="userData/users/user/userName" />

</Attribute>
<Attribute name="roleCode">

<AttributeLocation
tagPath="userData/users/user/roleCode" />

</Attribute>

Because the day, month, and year are nested inside the createDate element, you
can use the special character # in the tag path for these attributes:

<Attribute name="createDate-day">
<AttributeLocation

tagPath="userData/users/user/createDate#day" />
</Attribute>
<Attribute name="createDate-month">

<AttributeLocation
tagPath="userData/users/user/createDate#month" />

</Attribute>
<Attribute name="createDate-year">

<AttributeLocation
tagPath="userData/users/user/createDate#year" />

</Attribute>

Analyzing and Describing Flat-file Data

Management Console User’s Guide 33

Analyzing and Describing Flat-file Data
This section describes the following steps for creating a data descriptor for flat-file
data:

Understanding the Data Formats

Identifying the Entities

Identifying the Attributes for Each Entity

For a complete description of the syntax of flat-file descriptors, see “Data
Descriptors for Flat-file Data” on page 78.

Understanding the Data Formats
Example 2 shows sample data from an accounting system. The rest of this section
explains how to create a data descriptor file that describes the format of this data.

Example 2: Sample Flat-file Data
EP001Johnson/Lee7892213043-032Operations
EP001Davis/Terry8323023043-132Maintenance
EP001Franklin/Dana3820139233-202Accounting
EP0027892213,ljohnson1,483,20010329
EP0028323023,tdavis23,421,19981202
EP0023820139,dfranklin,291,20020113

It is not clear just from looking at this file what its structure is. Discussions with
domain experts reveal the following information about the sample data:

Two entities are represented: Employee and User_Audit.

The first three lines of data are Employee records.

The last three lines of data are User_Audit records.

The Employee entity has the following attributes:

The first five characters identify which entity this data belongs to.
The characters from the end of the entity indicator to the next slash (/)
character represent the employee’s last name, which appears in the ATS
definition in the context map as Last_Name.
The next group of alphabetic characters represent the employee’s first
name, which is First_Name in the ATS definition.
The next seven characters represent the employee number, which is
Employee_ID in the ATS definition.
Following the employee number is a number that represents the cost
center assigned to the employee, which is Cost_Center in the ATS
definition. The cost center number is three digits, a dash, and three more
digits.
The text from the end of the cost center to the end of the record is the
name of the cost center, which is Cost_Center_Name in the ATS definition.

3 Creating Data Descriptor Files

34 Management Console User’s Guide

The User_Audit entity has the following attributes, separated by commas:

The first five characters again identify which entity the data belongs to.
The characters from the beginning of the line to the first comma represent
an employee number, which is again Employee_ID in the ATS definition.
The characters up to the next comma represent the name of a user of the
accounting system, which is Username in the ATS definition.
The characters up to the next comma identify this user’s role in using the
accounting system, which is Role_Code in the ATS definition.
The characters from here to the end of the line indicate the date on which
this record was created, which is Create_Date in the ATS definition.

Identifying the Entities
The XML format for flat-file data descriptors contains a tag called Entity that
describes each logical entity in your data structure. The accounting system
contains two entities, Employee and User_Audit.

For each of these entities, you start by specifying where that entity appears in the
ATS definition for your context map and how to identify records associated with
that entity. The Entity element has three attributes you can use to do this:

The name attribute specifies the name of the logical ATS entity corresponding
to this physical entity in the ATS definition.

The entityIndicator attribute specifies a text string in the data that identifies
data for a particular entity.

Based on the analysis of the sample data, the string EP001 identifies Employee
data and the string EP002 identifies User_Audit data.

The delimiter attribute specifies one or more characters that signal the end of
data for each attribute of this entity type. This delimiter is global; you can
override it for each attribute.

Each Entity element contains an element called EntityInstance, which contains one
or more Attribute elements. The EntityInstance element has no attributes.

Therefore, the following XML code identifies the entities in the accounting system
data file:

<!DOCTYPE FlatFileDescriptor SYSTEM "ffdescriptor.dtd">
<FlatFileDescriptor>

<Entity name="Employee" entityIndicator="EP001">
<EntityInstance>

...
</EntityInstance>

</Entity>

Analyzing and Describing Flat-file Data

Management Console User’s Guide 35

<Entity name="User_Audit" entityIndicator="EP002"
delimiter=",">

<EntityInstance>
...

</EntityInstance>
</Entity>

</FlatFileDescriptor>

The next step is to fill in information about how to identify the data
corresponding to each attribute of each entity.

Identifying the Attributes for Each Entity
Inside the EntityInstance element for each Entity element, you add an Attribute
element for each attribute of that entity. The Attribute element serves two
purposes:

It links this attribute to a logical attribute of an entity in the ATS definition.

It describes how to identify data associated with that attribute.

The Attribute elements must appear in the Entity element in the same order as the
data for each attribute appears in the file.

You use a combination of the attributes on the Attribute element and the position
subelement and its attributes to describe how to parse the data for each attribute.
For a complete list of the attributes of these elements, see “Attribute Element” on
page 83 and “position Element” on page 84.

Using the position element you can specify the physical location in an entity
record of the data corresponding to the parent Attribute element. The value can be
a fixed offset from the beginning of the line or a relative offset from the end of the
last attribute found.

Using combinations of the attributes for this element, you can describe how to
identify the corresponding data in a number of ways, including:

Start at a specific character position and match a particular pattern.

Start at a specific character position and read up to a particular delimiter.

Read a specific number of characters, beginning immediately after the end of
the preceding attribute.

The following sections show examples of some of these options.

Describing the Attributes of the Employee Entity
Consider again the first Employee record in the sample data:

EP001Johnson/Lee7892213043-032Operations

Based on this example, the following sections explain how to write Attribute
elements to describe each of the attributes of Employee.

3 Creating Data Descriptor Files

36 Management Console User’s Guide

Describing Last_Name

Following the string that identifies this entity, the first attribute is the employee’s
last name. It appears as a text string terminated by a slash (/). To identify data for
the Last_Name attribute, you read the characters up to the delimiter character.

Therefore, the following XML element describes the Last_Name attribute:

<Attribute name="Last_Name" delimiter="/" />

Describing First_Name

The first name follows the last name, and ends at the beginning of the employee
number. The easiest way to identify the entire first name is to say “use all of the
characters from here until you encounter a number.”

You can express this in a regular expression. The matches attribute of the Attribute
element lets you provide a regular expression that describes the format of the data
for that attribute. In this case, the regular expression /D+ says to search for
characters that are not digits and continue until you find something that does not
match.

The following XML element describes the First_Name attribute:

<Attribute name="First_Name" matches="/D+" />

Using Regular Expressions

The regular expression parser in the Interoperability Server recognizes the
following ways to describe text to match.

Special Characters:

\ Used as an “escape” character before another special character, to
negate the special meaning of the character.

\\ Matches a single backslash character.

\t Matches an AXCII tab character.

\n Matches a newline character.

\r Matches a return character.

^ Looks for matches only at the beginning of a line.

$ Looks for matches only at the end of a line.

Groups of Characters:

[abc] Matches any of the characters inside the brackets.

[a-zA-Z] Matches any of the characters in the ranges in the brackets.

[^xyz] Matches any characters not in the brackets.

\d Matches any digit; equivalent to [0-9].

Analyzing and Describing Flat-file Data

Management Console User’s Guide 37

Describing Employee_ID

The employee number is seven digits long and follows the employee’s first name.
To specify the length of an attribute, you add a position element inside the
Attribute element. The position element has attributes that let you specify where
the data starts and how many characters long it is. In this case, you only need the
length attribute. For a complete list of attributes of the position element, see
“position Element” on page 84.

The following XML element describes the Employee_ID attribute:

<Attribute name="Employee_ID">
<position length="7" />

</Attribute>

Describing Cost_Center

The cost center number is three digits, a dash, and three more digits. Because it is
always seven characters long, you can use a position element with a length
attribute to describe the data for Cost_Center.

The following XML element describes the Cost_Center attribute:

<Attribute name="Cost_Center">
<position length="7" />

</Attribute>

Describing Cost_Center_Name

The name of the cost center starts immediately after the cost center number and
goes to the end of the line. Therefore, the only thing you need to specify for this
attribute is its name.

\D Matches any non-digit; equivalent to [^0-9].

\s Matches any whitespace character, including tabs, spaces, returns,
and newlines.

\S Matches any non-whitespace character.

\w Matches any alphanumeric (“word”) character, including _; equivalent
to [a-zA-Z0-9_].

\W Matches any non-alphanumeric character.

Repeated Characters:

* Matches the preceding character zero or more times.

+ Matches the preceding character one or more times.

? Matches the preceding character zero or one time.

Using Regular Expressions (Continued)

3 Creating Data Descriptor Files

38 Management Console User’s Guide

The following XML element describes the Cost_Center_Name attribute:

<Attribute name="Cost_Center_Name" />

You have now completely described the Employee entity:

<Entity name="Employee" entityIndicator="EP001">
<EntityInstance>

<Attribute name="Last_Name" delimiter="/" />
<Attribute name="First_Name" matches="/D+" />
<Attribute name="Employee_ID">

<position length="7" />
</Attribute>
<Attribute name="Cost_Center">

<position length="7" />
</Attribute>

</EntityInstance>
</Entity>

Describing the Attributes of the User_Audit Entity
Now consider the first User_Audit record in the sample data:

EP0027892213,ljohnson1,483,20010329

When you defined the Entity element for User_Audit, you specified a comma (,) as
the default delimiter for attributes of that entity. Notice that the format of the data
in this record is uniform—every attribute but the last one ends with a comma.
Therefore, the only thing you need to specify is the name of each attribute:

<Attribute name="Employee_ID" />
<Attribute name="Username" />
<Attribute name="Role_Code" />

The last attribute is a date, so you can also use the dataType and mask attributes of
the Attribute element to specify the format of the date. The following XML
element describes the Create_Date attribute:

<Attribute name="Create_Date" dataType="date" mask="YYYYMMDD"/>

For more information, see the next section, “About Masks.”

You have now completely described the User_Audit entity:

<Entity name="User_Audit" entityIndicator="EP002">
<EntityInstance>

<Attribute name="Employee_ID" />
<Attribute name="Username" />
<Attribute name="Role_Code" />
<Attribute name="Create_Date" dataType="date"

mask="YYYYMMDD"/>
</EntityInstance>

</Entity>

Analyzing and Describing Flat-file Data

Management Console User’s Guide 39

About Masks
Format masks are specific patterns that specify how numeric data and dates are
formatted in your data files. You can specify format masks for any attribute
whose data type is integer, decimal, float, or date. The Interoperability Server uses
this information to validate the formats when it exports data from the internal
work space to target application data files.

Masks for Numbers

Format masks for numeric data types use combinations of the following symbols:

The following table shows examples of format masks and what each one
produces:

0 a digit

a digit, zero shows as absent

. placeholder for decimal separator

, placeholder for grouping separator

; separates formats

- default negative prefix

% multiply by 100 and show as percentage

? multiply by 1000 and show as per mille

¤ currency sign, replaced by currency symbol; if doubled, replaced by
international currency symbol; if present in a pattern, the monetary
decimal separator is used instead of the decimal separator

X any other characters can be used in the prefix or suffix

‘ used to quote special characters in a prefix or suffix

Value Mask Produces

123456.789 ###,###.### 123,456.789

123456.789 ###.## 123456.79

123.45 000000.000 000123.450

123.456 $#####.###### $123.456

3 Creating Data Descriptor Files

40 Management Console User’s Guide

Masks for Dates

Format masks for dates use combinations of the following symbols:

The following table shows examples of format masks for dates and how each one
represents the date March 7, 2002:

y year

M month in year; M produces a number (3), MM produces a number with
leading zeroes (03), and MMM produces a word in English (March)

d day in month

h hour, using 12-hour clock

H hour, using 24-hour clock (0 is midnight)

m minute in hour

s second in minute

S millisecond

Format Produces

MM/DD/YYYY 03/07/2002

DDMMYYYY 07032002

YYYYMMDD 20020307

	3� Creating Data Descriptor Files
	Analyzing and Describing XML Data
	Understanding the Data Formats
	Using Tag Paths

	Identifying the Entities
	Identifying the Attributes for Each Entity
	Describing the Attributes of the employee Entity
	Describing the Attributes of the user Entity

	Analyzing and Describing Flat-file Data
	Understanding the Data Formats
	Identifying the Entities
	Identifying the Attributes for Each Entity
	Describing the Attributes of the Employee Entity
	Describing the Attributes of the User_Audit Entity
	About Masks

