
System Overview

Version 2.1

August 2002

System Overview, version 2.1

Copyright © 2001–2002 Modulant Solutions, Inc. All rights reserved.

August 2002, Version 2.1

Ownership of Materials. This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of such license. The contents of
this manual are furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Modulant. Modulant assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

This manual is protected by copyright and distributed under licenses restricting its use, copying,
translation, distribution, and decompilation. Except as permitted by such licenses, no part of this
manual may be reproduced in any form by any means without prior written authorization of
Modulant. Except as expressly provided herein, Modulant grants no express or implied rights to
anyone under any patents, copyrights, trademarks, trade names, or trade secret information with
respect to the contents of the manual.

Ownership of Trademarks. The trademarks, service marks, product names, company names or logos
and other marks displayed in the manual are the property of Modulant Solutions, Inc. or other third
parties. Any use of trademarks, service marks, product names, company names or logos, and other
marks, including the reproduction, modification, distribution, or republication of same without the
prior written permission of the owner is strictly prohibited.

Modulant, the Modulant logo, and Contextia are trademarks of Modulant Solutions, Inc. Other
trademarks, service marks, trade names and company logos referenced are the property of their
respective owners.

Disclaimers. THIS MANUAL IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID. FURTHER MODULANT DOES NOT WARRANTY,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF
THE USE, OF THE WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Notice to U.S. Government Users. All Modulant products and publications are commercial in
nature. The software and documentation are “commercial items,” as that term is defined at 48 C.F.R.
§2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable.
Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the
Commercial Computer Software and Commercial Computer Software Documentation are licensed to
U.S. Government end users (A) only as Commercial Items and (B) with only those rights as are
granted to all other end users pursuant to the terms and conditions set forth in the Modulant standard
commercial agreement for this software. Unpublished rights reserved under the copyright laws of the
United States.

System Overview iii

Table of Contents
List of Figures. .vii

Preface . ix

Who Should Read this Guide? .ix
Conventions Used in this Guide . x
What’s in this Guide? .xi
Related Documents .xi

1 Introducing Information Interoperability . 1
Enabling Information Interoperability. 2
Interoperability is About Communication . 3
The Role of Context. 6

2 Introducing the CIIM . 7
Underlying Principles. 7
The CIIM Framework . 8
CIIM Architecture . 9

Data Elements. 10
Information Units. 10
Map Domains . 10

The CIIM Methods . 11
Context Discovery . 11
Context Formalization. 12
Context Accommodation . 12

3 The Interoperability Process. 15
Design-time Process: Applying the CIIM . 15

Develop an Interoperability Strategy . 16
About Abstract Conceptual Models. 17
About Application Transaction Sets (ATSs) . 18

Describe Application Data Formats in Data Maps . 19

iv System Overview

Develop Application Schemas .19
Create Data Maps to Describe Physical Structures .20

Capture Application Context in Context Maps .20
About Context Map Files .20
The Mapping Process .21

Run-time Process: Achieving Information Interoperability. .23
Configure Interoperability Run. .23
Perform Interoperability Run .24
Retrieve Target Data in Native Format and Verify Results .24

4 Modulant Contextia Tools and Components . 25
Design-time Tools: The Interoperability Workbench .26

The Data Mapper. .26
The Context Mapper .27
FirstSTEP XG and FirstSTEP EXML .28

Run-time Tools: The Interoperability Server and its Client Tools .29
The Interoperability Run Console .29
The Interoperability CL .30
The Interoperability Server Administrator .31
The Interoperability API .33

Inside the Interoperability Server .33
Server Components. .33
Flow of an Interoperability Run .36

5 An Interoperability Example . 39
Introducing the Sample Applications .39
Developing a Mapping Strategy .40
Creating the Mapping Specifications .42

Describing the Data. .42
Describing the Context .45

Performing an Interoperability Run .47

6 Architectural Considerations. 51
Synchronous vs. Asynchronous Interoperability Runs .51

Synchronous Operation .51
Asynchronous Operation and the Job Queue .52

Remote vs. Embedded Servers .52
Remote Server Using JMS .53
Remote Server Using Web Services and SOAP .54
Embedded Server .56

System Overview v

Glossary . 57

Index . 67

vi System Overview

System Overview vii

List of Figures
Figure 1: Request for Information Across Related User Communities . 4
Figure 2: Response to Request for Information. 5
Figure 3: The CIIM Methods . 8
Figure 4: Aggregations of Data and Information . 9
Figure 5: Design-time Process . 16
Figure 6: Mapping Data Elements to an ACM . 21
Figure 7: Enabling Information Interoperability . 23
Figure 8: Data Mapper Main Window . 27
Figure 9: Context Mapper Main Window . 28
Figure 10: Interoperability Run Console Main Window . 30
Figure 11: Interoperability CL Usage Message . 31
Figure 12: Interoperability Server Administrator Main Page . 32
Figure 13: The Modulant Contextia Interoperability Server. 34
Figure 14: Interoperability Flow . 36
Figure 15: US Tours and Euro Travel . 40
Figure 16: Mapping Strategy for US Tours and Euro Travel . 42
Figure 17: Format Conversion to Split start_date into Parts . 45
Figure 18: The Interoperability API Job Queue. 52
Figure 19: Using the JMS Conduit . 54
Figure 20: Using the SOAP Conduit . 55
Figure 21: Using an Embedded Server. 56

List of Figures

viii System Overview

System Overview ix

Preface
The Modulant Contextia Interoperability Platform is Modulant Solutions, Inc.’s
revolutionary toolset for creating information interoperability.

The System Overview outlines how the Modulant Contextia platform enables
information interoperability, with descriptions of the overall work flow, the
individual tools and components that are part of this platform, and examples of
how interoperability architects use these tools to make interoperability a reality.

This preface contains the following topics:

Who Should Read this Guide?

Conventions Used in this Guide

What’s in this Guide?

Related Documents

Who Should Read this Guide?
The audience for the Modulant Contextia Interoperability Platform includes
interoperability architects, domain experts, and software developers.

Interoperability architects describe application data structures in data maps,
create context maps from those data structures to an Abstract Conceptual
Model, and perform interoperability runs. During this process,
interoperability architects retain an overall view of all of the applications in
an interoperability environment.

Domain experts work with interoperability architects to help them
understand both the structure and the context of their community’s data.

Java programmers can use the Interoperability API to automate the process of
transforming data from one or more data sources to another.

The documentation set is intended to serve as a supplement to the material
available in the Modulant training program; for information and a course catalog,
visit www.modulant.com/partners/training.shtml.

This guide assumes that you are familiar with the following topics:

Your operating system (Windows or Solaris) and its file system

Data modeling and XML representation of data

http://www.modulant.com/partners/training.shtml

Preface

x System Overview

Your application domain

Relational database management systems (RDBMSs)

Conventions Used in this Guide
The manuals in the Modulant Contextia Documentation Library use the following
typographic conventions:

Descriptions of procedures also use the following conventions:

The manuals contain notes, tips, and warnings that provide particular
information, as follows:

Notes provide related information that does not fit directly into the flow of the
surrounding text.

Tips provide hints containing shortcuts or alternative ways of accomplishing
a task.

Warnings contain critical information that could prevent physical damage to
equipment, data, or people.

Some of the diagrams in the manuals use EXPRESS-G graphical notation. For an
explanation of the symbols in these diagrams, see Appendix A, “EXPRESS-G
Language Notation,” in Using the Context Mapper.

Discussions of XML files contain diagrams that show the structure of the
associated DTDs (document type definitions). Each of these diagrams contains a
legend describing the symbols in the diagram.

bold text File names, XML elements, user interface controls, and
language keywords.

bold italic text Variable elements; for example, parameters in code syntax.

italic text New terminology; also emphasized words and book titles.

SMALL CAPS Names of keys on the keyboard.

monospace text Examples, such as XML fragments or Java code; or text you
type exactly as it appears.

File>Import A menu path to follow; in this example, from the File menu,
select Import.

CTRL+C Press both keys at the same time.

ESC F I Press and release each key in succession.

What’s in this Guide?

System Overview xi

Operating System Specifics. All of the information in this manual applies to
both Windows and UNIX systems. However, pictures of dialog boxes show the
Windows “look” and path names use a backslash (\), rather than a forward slash
(/), to separate directory names.

What’s in this Guide?
The System Overview contains the following sections:

Chapter 1, “Introducing Information Interoperability,” describes what
information interoperability is about and how the Modulant Contextia
Interoperability Platform solves semantic conflicts among systems that must
share information.

Chapter 2, “Introducing the CIIM,” describes the Context-based Information
Interoperability Methodology, Modulant’s patent-pending methodology.

Chapter 3, “The Interoperability Process,” lists the stages in the process of
implementing information interoperability from a high-level perspective.

Chapter 4, “Modulant Contextia Tools and Components,” describes the
design-time tools that are part of the Interoperability Workbench and the run-
time tools and components that come with the Interoperability Server.

Chapter 5, “An Interoperability Example,” presents a simple example of
interoperability between two travel companies.

Chapter 6, “Architectural Considerations,” shows some system architectures
you might use when implementing information interoperability.

The Glossary defines terms specific to the Modulant Contextia platform, as
well as industry-standard terms used in the Modulant Contextia
Documentation Library.

Related Documents
In addition to this guide, the Modulant Contextia Interoperability Platform
Documentation Library contains the following manuals:

System Overview (this manual): Introduces the Modulant Contextia
Interoperability Platform and the associated methodology, and describes all
of the included tools and components.

About Sidebars

As you read the documentation, you will encounter information contained in
sidebars like this one. These sidebars provide background material related to
the surrounding information.

Preface

xii System Overview

Modulant Contextia Interoperability Server Guide, which includes:

Using the Interoperability Run Console: Provides detailed explanations of
each of the parts of the Contextia Interoperability Run Console, with
information on troubleshooting the results of interoperability runs.
Using the Interoperability Server Administrator: Describes how to start the
Interoperability Server, set database connections, and perform standard
server administration tasks.
Modulant Contextia Developer’s Guide: Introduces the Interoperability API,
with examples of how to use it to automate interoperability runs.
Installing the Modulant Contextia Interoperability Server: Describes the
system requirements for the Modulant Contextia Interoperability Server,
and walks you through the installation and configuration process.

Modulant Contextia Interoperability Workbench Guide, which includes:

Using the Data Mapper: Describes how to create a description of the
physical format of your data and how to connect that to the logical
description of your application’s data structure—together this
information forms a data map.
Using the Context Mapper: Describes the mapping process, the elements of
the Modulant Abstract Conceptual Model, and how to use the Contextia
Context Mapper to create a context map file.
Installing the Modulant Contextia Interoperability Workbench: Describes the
system requirements for the Contextia Data Mapper and the Context
Mapper, and walks you through the installation process.

In addition to the printed documents, your Modulant Contextia installation
contains a complete online Documentation Library, in the doc subdirectory. You
can find the online Documentation Library in both HTML and PDF format.

To access the Modulant Contextia Documentation Library, do one of the
following:

From the Windows desktop, select Start>Programs>Modulant Contextia
Interoperability Server>Documentation Library.
On Solaris systems, open the file doc/wwhelp.htm in your Interoperability
Server installation directory in a browser window.

Note: If you cannot open a PDF file, download a copy of the free Acrobat
Reader at:
www.adobe.com/products/acrobat/readstep.html

http://www.adobe.com/products/acrobat/readstep.html

System Overview 1

1 Introducing Information
Interoperability
When there was only one computer program in the world, with only one user,
there was no problem making sure all of the necessary information was available.
This changed as soon as another computer system with different programs
entered the picture. At this point, there was no direct way for one system, whose
applications used information in a particular manner, to communicate with any
other system, whose applications might use information in another manner
altogether. This left each system isolated from the others, unable to share valuable
information.

Over time, many methods of enabling disparate systems to communicate have
been tried. Modulant has found a way to provide information interoperability—
the ability of two or more computer systems to understand each other and use
each other’s information in their own native context—while letting each
participating system remain autonomous. Information interoperability adds a
logical communication layer above the physical connections between systems.

Interoperability solutions complement existing enterprise systems and enable
them to work together. Without an interoperability solution, it is difficult for
different systems, even in the same conceptual domain, to share information
effectively without losing some aspect of the intended meaning of the data.

Information interoperability requires an understanding of the context in which
data is created and used—the realization that the information conveyed by the
data is always based on how people and organizations actually use the data.
Therefore, interoperability architects work closely with domain experts to
discover both explicit and implicit knowledge about application data.

This discussion covers the following topics:

Enabling Information Interoperability

Interoperability is About Communication

The Role of Context

1 Introducing Information Interoperability

2 System Overview

Enabling Information Interoperability
Communication is only successful when the intended recipients have understood
the message being conveyed. Information interoperability makes it possible to
make information available to all members of an interoperability environment
who need it to make business decisions. Modulant does this by retaining
individual company culture, including specialized terminology, perspective,
company folklore—which together form the context of an application. This
method recognizes differences and commonalities without compromising the
autonomy of each system.

Modulant makes interoperability possible by representing both application data
and the context of that data in a computable form, known as a context map, using
an abstract data model. Using these context maps, the Interoperability Engine
enables information interoperability between systems in related conceptual
domains (known as an interoperability environment), even if they use completely
different formats and terminology.

Modulant’s interoperability solution enables autonomous systems to exchange
semantically-rich information by:

Operating on a logical as well as a physical level.

Focusing on the integrity of information exchange, rather than on application
connectivity.

Interoperability is About Communication

System Overview 3

Performing semantic mediation using abstract domain models.

Accommodating variant application perspectives on data.

Providing a non-invasive, loosely-coupled solution that remains separate
from applications and data sources.

Interoperability is About Communication
Interoperability is the ability of people, organizations, and systems to work
together. Information interoperability is the ability of people, organizations, and
systems to communicate complete, meaningful information that enables everyone
involved to make the necessary decisions to conduct their business.

Consider two companies, one of which refers to the people who work there as
“employees” and the other of which refers to the corresponding group of people
as “staff members.” It would be burdensome to force either company to change its
native terminology in order to be able to work together. Fortunately, that is not
necessary. Instead, you can capture the meaning of both terms by moving up a
level of abstraction, and refer to “people” in both cases. This enables both user
communities to retain their preferred terminology and still communicate
successfully.

Figure 1 and Figure 2 show how interoperability makes effective communication
possible. In Figure 1, members of User Community 3 need two pieces of
information. They send a request to an interoperability service, from which
additional requests are sent to User Communities 1 and 2 to provide the necessary
information. Notice that each request is phrased using terms familiar to the
recipients, in their own native context.

Consider the case where User Community 1 represents a Sales organization that
stores data about customers and competitors; User Community 2 represents a
Procurement organization that stores data about suppliers and subcontractors;
and User Community 3 represents an Accounting organization that serves both
User Communities 1 and 2.

1 Introducing Information Interoperability

4 System Overview

Suppose that Accounting needs to know which of Sales’s and Procurement’s
accounts are overdue. The question goes through the interoperability server,
asking Sales, “Which of your customers pay late?” and asking Procurement,
“Which of your suppliers do you owe money to?

Figure 1: Request for Information Across Related User Communities

Interoperability is About Communication

System Overview 5

In Figure 2 you can see that each community answers using its own terminology,
which gets transformed to a format that the requestors understand:

Sales returns a list of customers that still have unpaid bills.

Procurement returns a list of bills they have yet to pay in full.

The interoperability server transforms this information and returns a list of
delinquent accounts to Accounting.

Figure 2: Response to Request for Information

1 Introducing Information Interoperability

6 System Overview

The Role of Context
Context is a somewhat elusive concept, because it involves describing what is not
always explicitly expressed. When you hear something that seems “out of
context,” you know that some fundamental information is missing. The context
lies in the details people often leave out because they think everyone knows them.
Within your own community, this often works, but when you try to communicate
with people outside your community, they might not understand until you clarify
what was left out.

Context depends heavily on the audience, and on their shared assumptions.
Member communities in an interoperability environment define the context of the
data in their own applications, based on how they use that data. Native context
includes the meaning and shades of meaning that data might have, as well as any
constraints on the values and relationships among data elements. This context
provides the foundation for mapping and data transformation for successful
interoperability.

Application context is the relevant information about the environment where
application data resides, including where the data is defined, created, and used.
Data context provides a frame of reference and clarifies the meaning of the data.
Without contextual information, data is not fully understandable.

The Modulant methodology relies on semantic abstraction: mapping data
elements from a more specific conceptual representation in a narrow context to a
more abstract conceptual representation in a broader, more encompassing
context. The mapping process focuses on meaning and shades of meaning that
data might have as well as constraints on values and allowed relationships.

System Overview 7

2 Introducing the CIIM

The Context-based Information Interoperability Methodology (CIIM) includes a
number of methods that enable you to discover the context of application data
elements and capture this information in a formalized representation. The result
of following these methods is a data map file that describes the physical format of
your data and its logical structure, and a context map file that includes an ATS
(Application Transaction Set) schema (a logical representation of the application
data structure in terms of entities and attributes) and one or more context maps
that you can use as part of an interoperability run.

This section includes the following topics:

Underlying Principles

The CIIM Framework

CIIM Architecture

The CIIM Methods

Underlying Principles
Successful implementation of an interoperability solution is impossible without a
concrete and consistent logical framework for understanding digital information.
Such a theory must consider how an interoperability solution views, understands,
represents, and manipulates the data that must be shared among applications in
an interoperability environment.

For example, without a concept of information apart from awareness of the data
between the tags in an XML document or the data in a database, no tool can
provide effective interoperability capabilities. It is necessary to account for all of
the meta-information that makes raw data useful to actual people in order for the
software to do anything significant to the information structures themselves.

The Context-based Information Interoperability Methodology is based on the
following principles:

1 Effective information interoperability depends on knowledge of context.

2 Introducing the CIIM

8 System Overview

2 Context can be described by characterizing data definition, data aggregation,
data usage, and data constraints.

3 Context can be discovered from data values, data patterns, data descriptions,
activities that create or use data, and functions that process or present data.

4 Context can be represented in a computable form.
5 Application information, including context, can be represented using an

Abstract Conceptual Model (ACM).
6 Interrelated application contexts can be accommodated using common

abstractions.
7 Declarative representation of instructions for information-preserving

transformations between application data and an ACM enable ACM-
mediated interoperability among applications.

The CIIM Framework
As shown in Figure 3 on page 8, the Context-based Information Interoperability
Methodology includes a number of methods. The result of applying these
methods is a data map and one or more context maps.

Figure 3 shows the methods that form the core of the Context-based Information
Interoperability Methodology. The result of each method forms the input for the
next method in the cascade.

Figure 3: The CIIM Methods

The major methods in the CIIM all address information and its context, each with
a different focus:

Context discovery focuses on analysis, of both data and its usage in context.
This phase also includes learning about the physical data structures.

CIIM Architecture

System Overview 9

Context formalization focuses on representation of that data, and results in an
ATS schema—a list of data elements and their relationships—and a data
map—a description of the physical format of the application data and how
the data fields correspond to the logical description in the ATS schema.

Context accommodation focuses on mapping data elements to an Abstract
Conceptual Model and defining the rules the Interoperability Server uses for
population and extraction operations on the ACM.

CIIM Architecture
The Context-based Information Interoperability Methodology relies on the
following key concepts to describe application data structures and relationships:

Data Elements

Information Units

Map Domains

Figure 4 shows how data elements combine to form information units.

Figure 4: Aggregations of Data and Information

The following sections explain these terms.

2 Introducing the CIIM

10 System Overview

Data Elements

The CIIM recognizes two types of data elements in an application:

Data elements are logical representations of data fields in an application. Each
data element is directly related to a root data element.

Root data elements are specialized data elements that identify a central concept
or subject in a data set. They serve as anchor points for mappings of related
data elements.

Root data elements are often the primary keys of database tables, or similar
identifiers on which other data elements depend for them to make sense. For
example, a product identifier is related to other characteristics of that
product’s appearance, and serves as the root data element for data elements
related to products.

Information Units

An information unit is the combination of a data element and the related root data
element. This combination describes one fact about an identified “thing,” where
the root data element is the identifier. The smallest information unit possible
contains only the root data element (and its relationship to itself).

For example, in a personnel application, if the employee ID is the root data
element, the combination of the employee ID with the employee’s name is an
information unit.

The collection of information units that share the same root data element is an
information aggregation. An information aggregation contains “information about
the same thing” as it occurs in an application. Information aggregations often
represent structures such as database tables, XML elements and their
subelements, and entities in a data model.

Note: When you create structure mappings using the Context Mapper, each root
structure in a map structure represents the context for an information
aggregation. For more information, see “Completing Structure Mappings” on
page 202.

Map Domains

The domain of a context map is the set of data elements required for an identified
business process. For example, in an application that stores information about
employees, you might learn during the context discovery phase that the process
that prints timesheets requires only an employee’s identification number and the
person’s last name. To enable information interoperability, you could create a
context map that included only these two data elements. For an example, see
Chapter 2, “The Mapping Process.”

The CIIM Methods

System Overview 11

Depending on the complexity of the application and the number of business
processes it supports, you might need to define more than one context map. Your
analysis of the data and the mapping strategy you choose will help you decide
which context maps are needed.

The CIIM Methods
The methods of the CIIM are concerned with understanding, analyzing, and
formally describing the semantics and context of application data.

This section discusses the following methods:

Context Discovery

Context Formalization

Context Accommodation

Context Discovery

Interoperability architects work with domain experts to apply the context
discovery methods. Using these methods, they identify both explicit and implicit
information about application data. Context discovery includes these stages:

Application Information Analysis

First, you must learn what the application data represents and how the data
elements relate to each other. To do this, you begin by examining instances of
the data itself, along with any written documentation that describes the data
structures. Knowing the scope of the data that will participate in the
interoperability process helps you identify the data elements involved.

Business Process Context Analysis

Once you have learned about the data, you proceed to discovering specific
ways in which people and organizations use the data. For each of these usage
scenarios, you collect information about the data in context. As you identify
the data used in each business process, you can use the information about the
context to plan an effective mapping strategy.

The context discovery phase produces a description of the application context,
including details that were originally both explicit and implicit. At the end of this
phase, you should have a description of the application data, either in the form of
a physical application schema (for example, in an EXPRESS file or a DTD) or a
written description of the data structures.

2 Introducing the CIIM

12 System Overview

Context Formalization

Context Formalization results in a definition of your application data structure, in
the form of a data map (stored in XML format in a file with a .dtm extension). In
this stage, you consolidate what you learned from the context discovery phase.
Using this method, you codify all of the explicit and implicit knowledge that you
gathered during your examination of the application data and design documents
and your interviews with domain experts.

As part of this process, you create a description of the logical structure of the data,
in terms of entities and attributes. This description is known as the ATS schema.
The ATS schema includes a list of the data elements in the application, including
the root data elements. At this point, you also identify the data elements in the
application and their related root data elements, along with any requirements for
format or data conversions.

Next, you develop a plan for how you will map the application’s data elements
and the relationships among them to your Abstract Conceptual Model. The
mapping strategy includes a list of the Abstract Conceptual Model attributes to
use as mapping targets for the data elements in the ATS schema and the
relationships among ACM entities that represent the context of the application
data.

Context Accommodation

Having created a formal definition of an application’s data set and identified an
Abstract Conceptual Model that can represent the concepts in your application,
you apply the Context Accommodation method. Using this method, you specify
mapping targets for the application’s data elements in your Abstract Conceptual
Model based on your mapping strategy, and add contextual information that
describes the relationships among related data elements. This is the heart of the
mapping process.

Another part of the context accommodation process uses the formal description of
the application data’s semantics and context to create computable instructions for
transforming data between different applications, while preserving semantics and
accommodating context. This includes:

Conversion Definition

Format conversions and data conversions provide additional information for
the Interoperability Server to use as it processes application data.

Using a format conversion you could specify how different applications
represent the same value. For example, you can specify data conversions
that separate the month, day, and year components from a date. This lets
each application specify how it represents dates, independently of the
abstract representation of each individual component. You can also use
data conversions to define derived fields, so that you can map data
elements that do not appear in the original data structures.

The CIIM Methods

System Overview 13

Using data conversions, you can specify formulas for translating data from
one application so that other applications can understand it. Data
conversions let you create “derived” fields to enable you to map data
elements that do not explicitly appear in the application data.

Population Rules

Population rules enable you to connect application data elements to attributes
in your Abstract Conceptual Model to supplement the connections already in
the context map. These connections let you refine how the Interoperability
Server populates the Abstract Conceptual Model with application data
during an interoperability run. At this point, you also specify default values
to use when populating Abstract Conceptual Model attributes for which there
are no corresponding application data values.

The results of the context definition methods form the core of the context map, in
the form of computer-processible declarative statements.

At the end of this stage, you have a context map file, with an ATS schema and one
or more context maps that capture the context of specific business processes.

2 Introducing the CIIM

14 System Overview

System Overview 15

3 The Interoperability Process

The interoperability process begins when you identify two or more applications
that require information from each other. These applications together form an
interoperability environment. To begin with, interoperability architects meet with
domain experts to develop an interoperability strategy. For more information
about developing this strategy, identifying an abstract representation to use, and
producing context maps, see Using the Context Mapper. For information about
creating data maps that describe the physical format of application data, see Using
the Data Mapper.

The overall interoperability process follows these stages:

Design-time Process: Applying the CIIM

Run-time Process: Achieving Information Interoperability

Some of the stages in the interoperability process are supported directly by the
Modulant Contextia Interoperability Platform. Other steps depend on your own
system architecture and tools.

Design-time Process: Applying the CIIM
The design-time process includes the following stages:

Develop an Interoperability Strategy

Describe Application Data Formats in Data Maps

Capture Application Context in Context Maps

Figure 5 shows what you create during the design-time process and the Modulant
Contextia tools that support each part of the process. For each application in your
interoperability environment, you start with a physical description of the
application data. Using this description, you create both a data map, which
mirrors the structure of the physical data fields in the application and an ATS
schema, which represents the logical structure of the data in terms of entities and
attributes. The ATS schema becomes the foundation for one or more context
maps, which describe the context of the data elements in the application and their
relationships in terms of an Abstract Conceptual Model.

3 The Interoperability Process

16 System Overview

Figure 5: Design-time Process

The following sections describe the high-level process that supports the creation
of the mapping strategy and the resulting mapping specifications.

Develop an Interoperability Strategy
The first step in implementing information interoperability is identifying the
member communities in an interoperability environment, and the applications
that must share information. With this information, you can begin to develop an
interoperability strategy.

A significant part of any interoperability strategy is the abstract representation of
the application domain, or ontology, that will be the starting point for your context
maps. The Modulant Contextia Interoperability Platform refers to this
representation as an Abstract Conceptual Model (ACM). The default installation
includes an ACM schema defined as an EXPRESS model. You can modify the
Modulant ACM to fit the needs of your application domain. For more information
about the contents of this model, see Chapter 4, “Inside the Abstract Conceptual
Model,” in Using the Context Mapper.

When you design interoperability strategies for the member applications in an
interoperability environment, it is essential that you plan all your context maps
using the same ACM—one that contains enough detail to represent the concepts
in all of the applications that must be able to work together.

Design-time Process: Applying the CIIM

System Overview 17

An effective interoperability strategy requires collaboration between
interoperability architects and domain experts:

Interoperability architects bring their knowledge of the application data,
including its context and knowledge of the Abstract Conceptual Model to
which the application data is to be mapped.

Domain experts bring their familiarity with the specifics of each application,
including the context of the data and how it is used.

Together, they identify the following information:

The major concepts, ideas, or things that each application deals with and
holds information about.

The major concepts, ideas, or things that are common across applications that
need to interoperate.

Using this information, they can determine which concepts from the Abstract
Conceptual Model to use to represent each of the application concepts and their
relationships.

At the end of this stage, you will have an EXPRESS model containing an Abstract
Conceptual Model schema that you can use to define context maps and a basic
agreement about which concepts in this model correspond to the major areas of
application functionality in the member applications.

About Abstract Conceptual Models
An Abstract Conceptual Model (ACM) represents a collective understanding of
the semantics of information commonly used by business applications. The
entities in this model are abstract enough to apply to a variety of situations. This
abstraction allows you to reuse the same entities as mapping targets in different
contexts within an interoperability environment.

The process of mapping involves associating data elements from an ATS schema
with attributes of entities in an Abstract Conceptual Model.

To create effective mappings, you must understand not only the entities in your
ACM and their relationships, but also the context and relationships of the data
elements in the applications that will share this data.

In order to work with the Modulant Contextia Interoperability Platform, an
Abstract Conceptual Model must be written in the EXPRESS language. The
Modulant ACM is extensible—you can add to it if it does not contain entities that
apply closely enough to a particular situation. You can even expand this EXPRESS
model to encompass new application domains.

3 The Interoperability Process

18 System Overview

About Application Transaction Sets (ATSs)
An application transaction set (ATS) is information that collectively represents the
data and context of an application for the purpose of interoperability. An ATS
serves as the “footprint” of an application in the Modulant toolset. An ATS
contains the following components:

Context map files, which are also known as CXM files. A CXM file has two
parts:

The ATS schema, which represents the logical structure of the application
data—the data elements and their properties.
The physical representation of the structure is known as the application
schema You use the application schema to create the ATS schema.
One or more context maps, which contain a set of mapping statements and
the associated structure mappings. A context map associates the ATS
schema with an Abstract Conceptual Model (ACM) schema.

You use the Context Mapper, part of the Modulant Contextia Interoperability
Workbench, to create CXM files.

Data map files, which describe the physical format of each source of
application data, and relate the physical data fields to logical data elements in
the ATS schema.

You use the Contextia Data Mapper, another part of the Modulant Contextia
Interoperability Workbench, to create data map files.

The context map files and data map files are created in the mapping process and
is used in the interoperability run process.

The EXPRESS Modeling Language

The EXPRESS data specification language is part of STEP (STandard for the
Exchange of Product model data), defined in International Standard ISO 10303,
and is used in the STEP methodology.

The STEP team discovered that existing modeling languages were not adequate
to convey the richness of the semantics required to represent abstract models
containing things, associations among those things, constraints, and
inheritance (represented by supertypes and subtypes).

The EXPRESS language can formally describe the structure and correctness
conditions of any information that needs to be exchanged. The EXPRESS
language describes constraints as well as data structure. Formal correctness
rules will prevent conflicting interpretations.

Design-time Process: Applying the CIIM

System Overview 19

Associated with each ATS is application data, which becomes known as ATS data
after it has been imported into the Interoperability Server. The application data
can come from:

the tables of a relational database

forms or reports generated by an application

XML data files

free-form or delimited flat files

Describe Application Data Formats in Data Maps
As shown in Figure 5 on page 16, the design-time process starts with a physical
description of an application’s data structure. From there you build a logical
representation of that data structure, which you use to define context maps that
capture the abstract concepts conveyed by the data and the context in which it is
used.

This stage includes the following tasks:

Develop Application Schemas

Create Data Maps to Describe Physical Structures

Develop Application Schemas
For each application in your interoperability environment—whether it will serve
as a source or a target of an interoperability run—you must describe the physical
structure of the data in a format that the tools in the Modulant Contextia platform
can understand.

To begin this process, you can create an application schema. You can save the
application schema as an XML DTD, a delimited flat file (such as CSV, comma-
separated values), or an EXPRESS model, or you can read the structure directly
from a relational database.

Using the application schema, you create a logical representation of the data
structure in terms of entities and attributes, which you save as an ATS schema in a
context map file. Each data map file you define will describe the data fields in the
application schema and how they correspond to the logical data elements in the
ATS schema.

At the end of this stage, you will have an application schema that describes the
physical data structures used by your application. You will use the application
schema to create the ATS schema section of your context map file.

3 The Interoperability Process

20 System Overview

Create Data Maps to Describe Physical Structures
For each physical source of application data, that is, for each file format your
application data uses, you create a data map file that delineates the actual data
formats. The data map file serves two purposes:

To enable the Data Importer and Exporter components of the Interoperability
Server to parse application data in its native format.

To define the relationship between the data elements in the ATS schema
portion of the context map file and the actual application data.

Your application data can take a variety of formats, including XML, delimited or
free form flat-files, or the tables of a relational database. The corresponding ATS
schema, however, must describe the data in a logical format using entities and
their attributes. Using the data map file, you specify how each of the fields in the
physical data file corresponds to an attribute of one of the entities in the logical
representation of the data structure. For more information, see Using the Data
Mapper.

At the end of this stage, you will have data map files that define the format of
source and target application data. The Modulant Contextia Interoperability
Server will use these files to parse source data as the input to an interoperability
run and to export target application data in its native format.

Capture Application Context in Context Maps
For each application in your interoperability environment, you must create one or
more context maps that define the relationships between the application schema
and attributes of entities in your Abstract Conceptual Model.

About Context Map Files
A context map file (also known as CXM file) is a representation of one or more
context maps in XML format. The context map includes both the ATS schema and
mapping information, including mapping statements and structure mappings.
The ATS schema portion of the CXM file is a list of the data elements in your
application schema and their properties, which forms a logical representation of
the structure of your data, using entities and their attributes.

Mapping involves discussions between interoperability architects (specialists in
the Context-based Information Interoperability Methodology, including the
Modulant Abstract Conceptual Model) and domain experts (specialists in the
source or target applications). Jointly, they confer about:

data meaning and nuance

isolating individual semantics so they can be separately mapped (think of this
as semantic normalization)

how to represent concepts in the Abstract Conceptual Model

Design-time Process: Applying the CIIM

System Overview 21

The end result of the mapping process is one or more context maps that associate
data elements in a source or target application with attributes in the Abstract
Conceptual Model.

 For details about the structure and contents of CXM files, see Using the Context
Mapper.

The Mapping Process
Figure 6 shows a small portion of the structure of two applications and how each
one can be mapped to an Abstract Conceptual Model (an abstract representation):

Manual and Writer in the Application 1 are mapped to Document and Person
in the Abstract Conceptual Model.

Staff Member in Application 2 is mapped to Person in the Abstract
Conceptual Model.

In an interoperability run, Writer in the source application (Application 1) would
be transformed into Staff Member in the target application (Application 2).

Figure 6: Mapping Data Elements to an ACM

3 The Interoperability Process

22 System Overview

The mapping process includes the following steps:

Identify Map Domains

Map Data Elements to ACM

Specify Required Conversion Definitions

At the end of this stage, you will have CXM files for the source and target
applications in your interoperability environment. You will be able to use these
CXM files when you perform interoperability runs.

For more information about context maps and the process for creating them, see
Using the Context Mapper.

Identify Map Domains

Before you can define a context map, you must determine which data elements in
the logical representation of the application data structure—the ATS schema—will
participate in each of your context maps. You can create the ATS schema using
either the Data Mapper or the Context Mapper.

The ATS schema lists the data elements in the application, along with their
properties, and defines each data element as an attribute of a logical entity that
represents a particular “thing” in your application.

Each context map can contain a subset of the data elements in the ATS schema, or
all of the data elements. The data elements in a context map are known as the map
domain. The domain of a context map contains all of the data elements necessary
to represent a known business process, whose context the map will capture.

Map Data Elements to ACM

After defining the domain of a context map, you specify mapping targets for the
data elements from the attributes of entities in your Abstract Conceptual Model.
Then you complete the structure mapping for the context map. The structure
mapping connects the mapping target for each data element and the mapping
target for the associated root data element.

Specify Required Conversion Definitions

In some cases, the data elements in your ATS schema do not correspond directly
to attributes of entities in your ACM. A conversion definition enables you to specify
how to handle a data element that does not have a direct mapping target in the
ACM.

Specifying the rules for separating or combining data elements, or for deriving
entirely new data elements from existing ones is part of the conversion definition
process.

Run-time Process: Achieving Information Interoperability

System Overview 23

Run-time Process: Achieving Information Interoperability
The run-time process includes the following stages:

Configure Interoperability Run

Perform Interoperability Run

Retrieve Target Data in Native Format and Verify Results

Figure 7 shows how the run-time process uses the mapping specifications you
created at design-time to produce information interoperability.

Figure 7: Enabling Information Interoperability

Configure Interoperability Run
After creating data maps and context maps for each of the applications that will
participate in an interoperability run, you are ready to define the parameters of
the run itself.

For each source and target application that will participate in an interoperability
run, you must specify the locations of one or more files of the following types:

CXM file, which contains the ATS schema (a logical description, in terms of
entities and attributes, of the application’s data structure) and one or more
context maps.

For information about creating context maps and the XML format in which
they are stored, see Using the Context Mapper.

3 The Interoperability Process

24 System Overview

Application data, which can be in a file or a relational database or inline with
the run configuration parameters.

Data map file, which describes how to parse and format the physical data, and
how the data fields in the application correspond to the logical entities and
attributes in the ATS schema section of the CXM file.

For information about creating data maps and the XML formats in which they
can be stored, see Using the Data Mapper.

You can cache frequently used files, such as your Abstract Conceptual Model,
on the Interoperability Server before you initiate interoperability runs that use
those files. You can do this in the following ways:

using the Interoperability CL

using SOAP messages you send to the Interoperability Server using HTTP

using the Interoperability API

This stage produces a set of run configuration parameters that you pass to the
Interoperability Server. If you use the Interoperability Run Console to define the
interoperability run, you can save the run configuration parameters in an XML
file. You can use this file to perform interoperability runs using the
Interoperability CL, SOAP messages, or Java client programs you write using the
Interoperability API.

Perform Interoperability Run
Using the configuration parameters you provide, the Interoperability Server
performs the interoperability run. At the end of the run, the Interoperability
Server extracts target data from the ACM as ATS data in the internal work space.
From there, the data is exported to target application data files. The
Interoperability Server uses the information in the target data map files to format
the exported data in the target application files you specified.

For more information, see “Flow of an Interoperability Run” on page 36.

At the end of this stage, you will have target application data. At this point, the
target data is formatted using the context and format familiar to users of the target
applications, and is ready to transfer to the system that needs it.

Retrieve Target Data in Native Format and Verify Results
After a successful interoperability run, you retrieve the target data from the
Interoperability Server. At this point you can review the results and verify that the
target data matches your expectations.

At the end of this stage, your target application data will be available for use by
the applications that need it.

System Overview 25

4 Modulant Contextia Tools and
Components
The Modulant Contextia Interoperability Platform is a collection of tools and
components that enable interoperability among heterogeneous applications
running on different machines and platforms. It fosters interoperability by
sharing information—including the full semantics and the context of the data
usage. The Modulant Contextia platform resolves conflicts between incompatible
systems by preserving the semantics and context of data.

To create true interoperability, the Modulant Contextia platform transforms data
from one source to another by mapping the logical schema of each application to
an abstract representation—known as an Abstract Conceptual Model (or, for short,
an ACM). The Modulant Contextia Interoperability Server reads context and data
maps for each participating application. The schema and map files that describe
the structure and context of an application’s data are known collectively as
Application Transaction Sets, or ATSs.

The tools that come with both the Interoperability Workbench and the
Interoperability Server run on both Windows and Solaris systems. The
Interoperability Server uses a database to manage the internal details of
interoperability runs. The number of database connections you define determines
the multi-threaded behavior of the server. Both Oracle and SQL Server databases
are supported.

This chapter addresses the following topics:

Design-time Tools: The Interoperability Workbench

Run-time Tools: The Interoperability Server and its Client Tools

Inside the Interoperability Server

4 Modulant Contextia Tools and Components

26 System Overview

Design-time Tools: The Interoperability Workbench
The Modulant Contextia Interoperability Workbench contains tools that support
the design-time stages described in “Design-time Process: Applying the CIIM” on
page 15.

The Interoperability Workbench contains the following tools:

The Data Mapper

The Context Mapper

Two additional Windows-based data modeling tools, FirstSTEP XG and FirstSTEP
EXML, support the Interoperability Workbench. Both of these tools are available
on the Workbench CD.

The Data Mapper
The Data Mapper enables you to describe the physical structure and format of
application data. The information you provide specifies how to parse the data to
identify the values for each data element at runtime. In addition to the physical
description, you specify how the physical constructs in the application data
correspond to the logical entities and attributes in an ATS schema.

Data map files can describe data in the following formats:

XML data

flat-file data, with or without specific delimiters between fields

relational database tables in Oracle and SQL Server databases

Figure 8 shows the main window of the Data Mapper:

The Fields and Containers region on the left shows you the properties of the
selected element in the data map.

The Data Map region in the middle shows the structure of the data map as
you build it.

The ATS Schema region on the right shows the logical structure of the data, in
terms of entities and their attributes, and how this logical structure
corresponds to the physical data fields in the application data.

Design-time Tools: The Interoperability Workbench

System Overview 27

Figure 8: Data Mapper Main Window

The Context Mapper
The Contextia Context Mapper enables you to define one or more context maps
for an application schema. The main window shows you the data elements in
your application along with the parts of the context map as you develop it. In
addition, you can view all or part of the structure of the Abstract Conceptual
Model that contains the mapping targets for your data elements.

Figure 9 shows the main window of the Context Mapper:

The ATS Schema region lists the data elements in your ATS schema and the
domain of the current context map. In this region, you can view and change
the properties of data elements and add data elements to the domain of a
context map.

The Abstract Conceptual Model region lists the entities in the Abstract
Conceptual Model that contains the mapping targets for the data elements in
your ATS schema.

The Structure Mapping region displays the structure mapping for a context
map. The structure mapping is a set of instances of Abstract Conceptual
Model entities and their relationships that together provide the context for
that data elements that appear in the context map.

4 Modulant Contextia Tools and Components

28 System Overview

Figure 9: Context Mapper Main Window

FirstSTEP XG and FirstSTEP EXML
The Modulant Contextia methodology takes advantage of two Windows-based
data modeling tools, FirstSTEP XG and FirstSTEP EXML. Both of these tools were
developed by PDIT (Product Data Integration Technologies), which is a
wholly-owned subsidiary of Modulant Solutions, Inc.

FirstSTEP XG lets you create a graphical representation of a data model using the
EXPRESS modeling language. You can export the graphical representation to a
text file in EXPRESS format.

FirstSTEP EXML takes a text-based EXPRESS schema and exports an XML DTD
in a format that the Modulant Contextia tools recognize and can use.

Run-time Tools: The Interoperability Server and its Client Tools

System Overview 29

Run-time Tools: The Interoperability Server and its Client Tools
The Modulant Contextia Interoperability Server comes with the following client
tools, which provide a variety of ways you can configure and initiate
interoperability runs:

The Interoperability Run Console

The Interoperability CL

The Interoperability Server Administrator

The Interoperability API

For details about the components of the Interoperability Server itself, see “Inside
the Interoperability Server” on page 33.

The Interoperability Run Console
The Interoperability Run Console enables you to perform asynchronous
interoperability runs, managed in a job queue. Figure 10 shows the main window
of the Interoperability Run Console.

The region on the left contains information about source applications that can
participate in interoperability runs. The region on the right contains parallel
information about target applications that will contain the results of
interoperability runs.

Below the Source Context Maps and Target Context Maps regions is a set of global
parameters that apply to this interoperability run.

Transformation Type: Specifies how to process this interoperability run.

Semantic: Perform a complete interoperability run, using the full
capabilities of the Modulant Contextia Interoperability Server.
Syntax: Bypass the Populator and the Extractor and only perform
conversion definition operations.

Run-time Flags: A group of settings that let you control the behavior of the
Interoperability Server during the population and extraction phases of an
interoperability run.

Enforce Unique: If you set this option, the Interoperability Server enforces
the uniqueness rules (that is, the key attribute constraints) defined in the
Abstract Conceptual Model while populating source application data.
Enforce ATS Keys: If you set this option, the Interoperability Server
enforces primary keys to avoid duplicate rows when extracting target
application data.
Left Join on Keys: If you set this option, the Extractor creates a key query
that uses the intersection of database table keys, plus the records that
match the keys. Setting this option guarantees that you get a record back
for every combination of the keys for which you have data.

4 Modulant Contextia Tools and Components

30 System Overview

Figure 10: Interoperability Run Console Main Window

The Interoperability CL
As a companion to theInteroperability Run Console , Modulant provides a
command-line tool that lets you manage the queue of interoperability runs. Using
the Interoperability CL (icmd), you can add interoperability run jobs to the queue,
obtain the status of a queued job, cancel a job, or remove jobs from the queue.

Using the Interoperability CL, you can perform interoperability runs either
synchronously or asynchronously. Synchronous runs are executed sequentially
from submittal to the Interoperability Server through processing to the return of
results to the requestor in one operation. Asynchronous runs, on the other hand,
are placed on a queue of interoperability jobs, and processed from there. At the
end of a synchronous run, you must explicitly request the Interoperability Server
to return the target data to you.

Figure 11 shows the usage message of the Interoperability CL, listing the
commands and options you can specify when you use this tool.

Run-time Tools: The Interoperability Server and its Client Tools

System Overview 31

Figure 11: Interoperability CL Usage Message

The Interoperability Server Administrator
The Interoperability Server Administrator provides a Web-based interface for
remote management of basic operation of the Interoperability Server. The Server
Administrator is only available when the Interoperability Server is already
running. You must start the Interoperability Server locally using a command-line
interface, on the host machine where it is installed.

After the Interoperability Server is running, you can use the Server Administrator
to restart the server, shut down the server, and modify database connection
information.

Figure 12 shows the main window of the Interoperability Server Administrator.
This page has three main regions: one for server management, one for data source
management, and one for changing the administrator password.

4 Modulant Contextia Tools and Components

32 System Overview

Figure 12: Interoperability Server Administrator Main Page

Inside the Interoperability Server

System Overview 33

The Interoperability API
The Interoperability API is a set of Java classes and interfaces that you can use to
create custom client programs to define, initiate, and monitor interoperability
runs.

Using the Interoperability API, you can specify the parameters for an
interoperability run, including the source and target applications and the run-
time options. You can submit this information directly to the Interoperability
Server or you can save it in an XML file.

You can perform synchronous or asynchronous interoperability runs, using either
JMS or SOAP to communicate from a client program to a remote server.

Inside the Interoperability Server
The Interoperability Server does the actual work of performing interoperability
runs, using the parameters you specify.

This section contains the following topics:

Server Components

Flow of an Interoperability Run

Server Components
Each interoperability run is defined by the parameters in a single run
configuration file. This file contains overall configuration information
information including the location of the Abstract Conceptual Model and server-
related settings, and a list of files associated with each source and target
application.

4 Modulant Contextia Tools and Components

34 System Overview

Figure 13: The Modulant Contextia Interoperability Server

The Interoperability Server stores information in an internal work space during
each interoperability run. The internal work space contains two types of data
sources:

The control data source stores a queue of asynchronous interoperability runs.

Each work data source stores temporary data used during a single
interoperability run. The number of work connections determines how many
threads the Interoperability Server can use in multi-threaded mode—one
thread per connection.

The Interoperability Server contains the following components, shown in
Figure 13, which work together to perform interoperability runs:

Transformation Manager: The Transformation Manager uses the control data
source to manage a queue of interoperability jobs and initiates jobs when
server threads are available to run them.

Data Importer: At the beginning of a run, the Data Importer parses source
application data based on the corresponding data map file and imports that
data into source ATS data in the work data source.

Inside the Interoperability Server

System Overview 35

Populator/Extractor: This part of the Interoperability Server first takes
imported source data from ATS data in the work data source and, following
the rules in the associated context maps, populates ACM tables with that
data. Then it uses the rules in the target context maps to extract data from
those populated ACM tables into target ATS data so that it can be exported.

Data Converter: This part of the Interoperability Server comes into play twice
during an interoperability run, to execute any conversion definitions you
have specified in source or target context maps:

After the Data Importer has imported source application data to ATS
data, but before the imported data is populated to ACM tables by the
Populator.
After the data populated into the ACM tables has been extracted as ATS
data by the Extractor, but before the Data Exporter exports the extracted
data to a target application data file.

Data Exporter: At the end of a run, the Data Exporter reads data from target
ATS data in the work data source and exports it to target application data
using the corresponding data map file.

The Interoperability Server uses the following additional components to
communicate with client programs:

JMS Conduit: The JMS Conduit enables you to send files and commands to a
remote server using JMS messages.

SOAP Conduit: The SOAP Conduit enables you to use Web Services to
communicate directly with the Interoperability Server, without the need for
any API calls.

4 Modulant Contextia Tools and Components

36 System Overview

Flow of an Interoperability Run
During interoperability runs, the Interoperability Server transfers data from
source ATSs to the Abstract Conceptual Model and, from there, to the target ATSs.
Because data is transferred to and from the Abstract Conceptual Model (an
abstract schema), meaning is preserved throughout the interoperability run.

Figure 14 shows the basic flow of an interoperability run.

Figure 14: Interoperability Flow

The following steps describe the process of an interoperability run from the
perspective of the data files and their interactions with the components of the
Interoperability Server and the internal work space:

1 The server locates the control data source and the work data sources.
2 The server waits for a request to perform an interoperability run:

a If a synchronous run is requested, the server reads the associated run
configuration file and begins the run, as described in step 3.

b If an asynchronous run is requested, the server sends the run
configuration parameters to the Transformation Manager, which adds the
job to the queue in the control data source. The Transformation Manager
initiates the run when the server is ready.

Inside the Interoperability Server

System Overview 37

3 The Interoperability Server reads the run configuration parameters and
identifies the application files required for this interoperability run:

One or more application data files for each source and target application
One or more data map files for each source or target application data file
One or more context map files for each source and target application
One Abstract Conceptual Model for the entire interoperability run

4 The Interoperability Server waits until all of these files are available and
stores them together for this interoperability run.

5 The Data Importer reads each source data map file and uses that information
to parse the corresponding application data file and save it in the work data
source as ATS data.

6 For each source of ATS data, if the corresponding context map contains data
conversion definitions, the Data Converter performs any necessary
preprocessing (input) conversions on the data in that ATS data.

7 If the transformation type is Semantic, the Populator uses the information in
the source context maps to populate the data from each source of ATS data
into ACM data in the work data source. Otherwise, if the transformation type
is Syntax, skip to step 9.

Semantic transformation performs a full interoperability run, using the
full capabilities of the Modulant Contextia Interoperability Server.
Syntax transformation includes format conversion only, using the Data
Converter, but bypassing the Populator and the Extractor.

8 The Extractor uses the information in the target context maps to extract data
from the populated ACM data to target ATS data in the work data source.

9 For each set of target ATS data, if the corresponding context map contains
data conversion definitions, the Data Converter performs any necessary
postprocessing (output) conversions on the data in that ATS data.

10 The Data Exporter reads each target data map file and uses that information
to export extracted data from target ATS data into target application data files.

4 Modulant Contextia Tools and Components

38 System Overview

System Overview 39

5 An Interoperability Example

Now it’s time to look at a real example. This chapter describes two sample travel
applications that want to share information with each other. One company is
based in the U.S. and the other has offices throughout Europe. Both companies
want to advertise the group tours available from each company.

This chapter addresses the following topics:

Introducing the Sample Applications

Developing a Mapping Strategy

Creating the Mapping Specifications

Performing an Interoperability Run

Introducing the Sample Applications
Consider two applications in a sample interoperability environment, US Tours
and Euro Travel. Both store information about tour packages, including the length
of each trip and its cost. Each company wants to provide information to their
customers about tours available from the other company.

Figure 15 shows EXPRESS models that describe the data structures used by each
of these travel applications. For information about reading EXPRESS diagrams,
see Appendix A, “EXPRESS-G Language Notation,” in Using the Context Mapper.

5 An Interoperability Example

40 System Overview

Figure 15: US Tours and Euro Travel

Notice the following things about these applications:

The US Tours application has a starting date and the duration of a tour
package, but does not explicitly store the ending date.

The Euro Travel application, on the other hand, has a starting date and an
ending date, and leaves the duration implicit.

Both applications list the price of a tour, but use different currencies.

Both applications list dates, but display them in different formats.

The Euro Travel application uses a composite key—Trip_ID plus
Country_Code—to uniquely identify tour packages.

Developing a Mapping Strategy
Based on the information in “Introducing the Sample Applications,” a valid
mapping strategy for this interoperability environment includes the following
considerations:

1 Identify the major concepts represented by both applications.
Tour packages, which can be considered products sold by each company.
Using the Modulant Abstract Conceptual Model, you can map the unique
identifier for each tour package to the id attribute of the abstract product
entity.

Start_Date is a string of the format
MM/DD/YYYY.

Duration is a number of days.

Cost is in US dollars.

Trip_ID, combined with Country_Code, forms a
unique identifier for a tour package.

Both Departure_Date and Return_Date are
strings of the format DDMMYYYY, where
single-digit days and months have leading
zeros.

Price is in Euros.

Developing a Mapping Strategy

System Overview 41

Note: The Context Mapper uses the notation entity.attribute to identify
objects in the ACM; therefore, the mapping target for the identifier of a
tour package becomes product.id.

The dates of each tour package you can purchase.
Using the Modulant ACM, you can map the individual parts of each date
to the day_component, month_component, and year_component
attributes of the abstract calendar_date entity.
The cost of each tour package.
Using the Modulant ACM, you can view the cost of a tour as a way of
classifying the tour package, which enables you to map it to the name
attribute of the abstract group entity.

2 Choose common representations for data that must be shared across
applications, and convert to and from those representations.

Both applications store dates, but each one uses different date formats
and each stores different date values. Therefore, you can decide to map
only starting and ending dates and calculate the duration when
necessary.
Both applications include the price of a tour, using different currencies.
Therefore, you can decide to map all prices in US dollars and convert
application data values that use other currencies to and from dollars
when necessary.

3 Identify the conversion definitions necessary to support the common
representations you chose.

To handle dates, both applications require format conversions to split the
date fields into component parts. In addition, the US Tours application
requires two calculations.
On input, you must derive the ending date from the imported starting
date and duration values. On output, you must calculate the duration
using extracted values of starting and ending dates.

Note: Because Euro Travel already stores both starting and ending dates,
you do not need to do any additional calculations for date values in the
Euro Travel context map.

To handle currency values, you must convert the price from the native
currency to dollars on input. For Euro Travel, this means converting
Euros to dollars on input and back to Euros on output.

Note: Because US Tours already stores prices in dollars, you do not need
to do anything special to handle currency values in the US Tours context
map.

Figure 16 shows the subset of the Abstract Conceptual Model that contains the
mapping targets, with a description of the mapping strategy outlined here.

5 An Interoperability Example

42 System Overview

Figure 16: Mapping Strategy for US Tours and Euro Travel

Creating the Mapping Specifications
In order to be able to share information between the US Tours and Euro Travel
applications, you must create both data maps and context maps for each
application. Based on the mapping strategy described in the preceding section,
you have enough information to accomplish this.

Describing the Data
From discussions with domain experts, you learn that US Tours stores its data in
XML format, and Euro Travel prefers to use delimited flat files for its data.

For example, sample data from US Tours looks like:

<ustourdata>
<ustours>

 <tour_number>A00100</tour_number>
 <start_date>11/01/2001</start_date>
 <duration>10</duration>
 <cost>1</cost>

</ustours>

Creating the Mapping Specifications

System Overview 43

<ustours>
<tour_number>A00101</tour_number>
<start_date>01/01/2002</start_date>
<duration>20</duration>
<cost>2</cost>

</ustours>
. . .

</ustourdata>

The data map corresponding to this data looks like:

In the XML data structure, the starting date is contained in a single XML element.
Therefore, you can use a conversion definition in the context map to split the date
into separate month, day, and year parts for mapping to the ACM.

5 An Interoperability Example

44 System Overview

Sample data from Euro Travel looks like:

13412,FR,21062002,30062002,2061.25
13413,UK,21062002,25062002,1212.50
13414,CH,24062002,26062002,824.50

The data map corresponding to this data looks like:

Notice that in the flat-file data structure, the dates appear in individual fields,
surrounded by commas. In a flat-file data map, you can specify how to split each
date into three parts based on its position in the date field. Using the Right
Justified and Pad Character settings, you can specify that both the day and the
month parts have a fixed length of two characters, and a leading zero (the pad
character) when the value is less than two characters long.

Creating the Mapping Specifications

System Overview 45

Describing the Context
According to the mapping strategy, tour packages are considered as products. The
following context map shows the mapping statements for the data elements in the
ATS schema for US Tours. On the right you can also see the structure mapping for
the root data element, tour_number, which is mapped to product.id, and includes
the context string tour package (below the structure mapping).

Notice also at the top left, you can see the conversion definition that separates the
single data element start_date into three component parts. Figure 17 shows this
format conversion graphically.

Figure 17: Format Conversion to Split start_date into Parts

The Abstract Conceptual Model region in the center of the Context Mapper main
window shows how the temporary data elements created in the conversion
definition have been mapped to attributes of the abstract entity calendar_date.

5 An Interoperability Example

46 System Overview

As you define your context maps, you can take advantage of the fact that related
context maps are part of an interoperability environment. The Context Mapper
shows you the context strings that have been defined in related context maps so
that you can reuse existing values to ensure consistency in your definitions of
context.

After you have defined context maps for each of the applications in your
interoperability environment, you can perform a test interoperability run to verify
that your mappings are effective.

Performing an Interoperability Run

System Overview 47

Performing an Interoperability Run
To perform an interoperability run for the purpose of providing information
about tour packages offered by US Tours to Euro Travel for display to their
customers, you specify the following information for each application:

the name and location of the CXM file

the name of the context map to use for the transformation

the location of the application data:

for the source application (US Tours), you specify where to find the
source data
for the target application (Euro Travel), you specify where to put the
target data after a successful interoperability run

the name and location of the data map file that describes the format of the
application data

Using the Interoperability Run Console, the configuration looks like this:

5 An Interoperability Example

48 System Overview

When you start the interoperability run, the Queue Monitor displays the progress
of the interoperability job:

When the interoperability run has been completed successfully, the Queue
Monitor moves the job from the Active queue to the Completed queue. At this
point, you can have the Interoperability Server move the target data from its
internal cache to the location you specified.

Performing an Interoperability Run

System Overview 49

To verify that the interoperability run was successful, you can compare the source
and target data values to see that the proper data was transformed correctly. You
can use the Interoperability Run Console to display these values. In this example,
the source data from the US Tours application looks like:

Remember that the US Tours source data supplied to this interoperability run is in
XML format, as shown in “Describing the Data” on page 42.

The target data, in the format of the Euro Travel application, looks like:

Notice that this target data reflects the values from the source data, using the field
names of the target application, as defined in the data map. In fact, the data file
created by the Interoperability Server at the end of this interoperability run, in
flat-file format, looks like:

A00100,USA,01112001,11112001,1.4
A00101,USA,01012002,21012002,2.8

Even though the source data from US Tours does not include an explicit country
code, the context map for this application supplies the string USA in the form of
context for this data. This information came from the context discovery method.

5 An Interoperability Example

50 System Overview

System Overview 51

6 Architectural Considerations

The Interoperability API provides a diverse set of deployment options. This
section explores these options and provides details about each one so that you can
choose which combination of options best suits the needs of your enterprise.

This section contains the following topics:

Synchronous vs. Asynchronous Interoperability Runs

Remote vs. Embedded Servers

Synchronous vs. Asynchronous Interoperability Runs
The Interoperability Server provides two ways to execute interoperability runs:
synchronously, where the client program waits for the results before proceeding,
and asynchronously, where the client program sends the job to the
Interoperability Server and continues its operation.

The Interoperability Run Console provides only asynchronous operation. If your
application would benefit from synchronous operation, you must implement it
using the Interoperability API.

The following topics describe these modes:

Synchronous Operation

Asynchronous Operation and the Job Queue

Synchronous Operation

Synchronous execution of interoperability runs provides immediate results to
your client program. Using this mode, you do not have to interact with a job
queue; instead, the client program initiates an interoperability run, which the
Interoperability Server performs using the first available execution thread. This
enables greater efficiency for interoperability jobs with small amounts of data,
such as transaction-based applications. In addition, if you have defined a large
number of working threads, then multi-threaded execution of synchronous jobs
provides an even more attractive option.

6 Architectural Considerations

52 System Overview

Asynchronous Operation and the Job Queue

Asynchronous execution lets you run interoperability jobs in the background
while your client program continues operation. In this mode, you can queue large
interoperability runs and retrieve the results as each job finishes.

When you choose asynchronous operation, the Interoperability Server creates a
queue of interoperability jobs. You can write code to query the Interoperability
Server to see the status of specific jobs, and also to cancel jobs in the queue.

Figure 18 shows the asynchronous job queue and what happens when you add a
new job.

Figure 18: The Interoperability API Job Queue

Remote vs. Embedded Servers
The Interoperability API provides a variety of ways for your client program to
connect with the Interoperability Server.

This section examines the following configuration options:

Remote Server Using JMS

Remote Server Using Web Services and SOAP

Embedded Server

Remote vs. Embedded Servers

System Overview 53

Remote Server Using JMS

To create a distributed client-server application, you can use JMS (Java Message
Service) to communicate between client programs and the Interoperability Server.
Using a messaging system allows separate, loosely-coupled clients and servers to
reliably communicate asynchronously or synchronously.

The JMS Conduit, part of the Interoperability Server, enables client programs to
run transformations from a remote location. This component transfers the
necessary data and files between the server and client. The JMS Conduit interacts
with the Transformation Manager component of the Interoperability Server to
execute the interoperability runs.

The JMSConfigurator class selects a JMS Conduit for interacting with the
Interoperability Server. Using this configuration option enables a client program
to initiate interoperability runs across a network—in a separate JVM than the
client application—via JMS.

Figure 19 shows an example of a client program using the JMS Conduit to
communicate with the Interoperability Server.

6 Architectural Considerations

54 System Overview

Figure 19: Using the JMS Conduit

Remote Server Using Web Services and SOAP

SOAP (Simple Object Access Protocol) enables exchange of information in a
decentralized, distributed environment, using messages formatted using agreed-
upon XML structures.

The Interoperability Server contains a SOAP Conduit component, which makes it
Web Services-enabled. The SOAP Conduit allows client programs to initiate
interoperability runs remotely using SOAP messages.

Client programs create SOAP messages, whose formats are defined in WSDL
(Web Services Description Language). In some cases, all of the necessary
information appears in the message, and in other cases the message can have
additional files attached to it.

Remote vs. Embedded Servers

System Overview 55

Soap client programs can generate SOAP requests either with the Interoperability
API or directly according to a supplied WSDL file. The SOAP Conduit, part of the
Interoperability Server, receives messages from client programs and decodes
them. The Interoperability Server returns a response to the client as a SOAP
message.

Figure 20 shows an example of a client program using the SOAP messages to
communicate with the Interoperability Server.

Figure 20: Using the SOAP Conduit

6 Architectural Considerations

56 System Overview

Embedded Server

Depending on your circumstances, it might be more efficient to perform
transformation runs in-process (in the same JVM) as the client program. This
eliminates the need for network communication. If you are running the
embedded server in several programs at once, only one should have queue
dispatching enabled for asynchronous jobs. All of the servers can submit jobs, but
only one should manage the queue. All embedded servers can, however, process
synchronous jobs independently.

The EmbeddedEngineConfigurator class selects an embedded Interoperability
Engine. Modulant recommends this option to advanced users only. For more
information, see “EmbeddedEngineConfigurator Class” on page 113.

Figure 21: Using an Embedded Server

System Overview 57

Glossary
Abstract Conceptual Model Also ACM. A description of an information

domain (also known as an ontology), in the form of a data model, that can
completely and accurately represent the information, including context,
created or used by many different applications.

ACM See Abstract Conceptual Model.

application The functionality of a computer system and the data that it operates
on. Within the CIIM, an application is the source or destination for
information interoperability.

application context The environment in which application data is created and
used (see also context). Without knowledge of application context, the data
created and used by an application is not fully understandable and cannot be
meaningfully communicated between applications.

application data Data instances that are created and used by an application.

application schema A schema that governs or describes the data that is created
or used by an application. An application schema can include the names of
the data collections and data elements used in an application (for example,
entities and attributes or tables and columns), the structure of the application
data, data types, constraints, etc. Application schemas are external to the
Modulant Contextia tools and components.

application transaction set . Also ATS. A description of the data that is created
or used by an application and is within the scope of an interoperability
environment. An ATS serves as the “footprint” of an application in the
Modulant toolset.

In the CIIM, an ATS is represented by:

one or more data maps that describe the application’s physical data
structure
an ATS schema (ATS data elements—the logical representation of the
application’s physical data structure in the form of entities and attributes)
one or more context maps that relate the data elements in the ATS schema
to an Abstract Conceptual Model

Glossary

58 System Overview

Information that contributes to the specification of an ATS includes:

an application schema that describes the structure of the application data
an application context description that describes the context of the
application data
sample application data that is used in the process of describing the
application context

ATS See application transaction set.

ATS data Representation of a set of application data inside the internal work space
of the Interoperability Server. The logical structure of a set of ATS data is
described by an ATS schema.

ATS schema A description of the logical structure of application data, used by the
the Data Mapper, the Context Mapper, a context map file, and the
Interoperability Server. An ATS schema consists of a set of data elements
described in the form of logical entities and their attributes.

CIIM Pronounced simm. See Context-based Information Interoperability Methodology.

combine A type of format conversion, in which you create a compound element by
concatenating two or more data elements in the domain of a context map.

comma-separated values Also CSV. A file format in which text fields in the file
are separated by commas.

compound element An ATS data element that is composed of multiple sub-
elements, as defined by a format conversion.

compound mapping Creating more than one mapping statement for a single data
element in a map domain.

constraint A restriction on the values of an ACM terminal attribute in a structure
mapping in a context map.

context The environment in which data is created and used. Context provides a
frame of reference for data and includes the users and processes that create
and use data, together with the background knowledge, assumptions, and
terminology that contribute to the meaning of data. See also semantics.

Context-based Information Interoperability Methodology Also CIIM. The
Modulant methodology that enables information interoperability by
explicitly recognizing and accommodating the information and its context as
it is used and produced by applications.

context accommodation One of the methods of the CIIM. The process of using
an Abstract Conceptual Model to precisely capture the application information
(including context) described by one or more ATSs.

The context accommodation method consists of relating theinformation units
in an ATS schema to structure mappings in one or more context maps.

Glossary

System Overview 59

context formalization One of the methods of the CIIM. The process of
identifying sets of data elements (including root data elements) that characterize
the definitions, aggregations, and business process usage of application data.

The context formalization method consists of analysis of sample application
data and application data descriptions (including application schemas) to
create an ATS schema, and results in an understanding of the application context
sufficient to apply the context accommodation method.

context map A formal, computable representation of an application transaction
set. A context map starts with an ATS schema and contains a reference to an
Abstract Conceptual Model and mapping statements for each data element in the
map domain, including the map structure. Context maps are stored with the
ATS schema in CXM files.

Context Mapper Part of the Modulant Contextia Interoperability Workbench, a
tool that enables an interoperability architect to map the data and the semantics
of any application system to an abstract representation.

control data source Part of the internal work space used by the Interoperability
Server, the control data source stores a queue of asynchronous interoperability
runs.

conversion definition Includes both format conversion and data conversion.
Definition of a function that computes the values of one or more data
elements in the domain of a context map from the values of one or more other
data elements.

CSV See comma-separated values.

CXM A context map file in XML format.

data Symbols, such as numbers and characters, without inherent meaning.

data conversion A formula that defines arithmetic operations to perform on one
or more data elements in the domain of a context map (for example, to create
derived attributes).

Data Converter Part of the Interoperability Server, the Data Converter performs
transformations on ATS data in the internal work space.

The Interoperability Server invokes the Data Converter at two different stages
of an interoperability run:

As a pre-processor, performing transformations on imported source data
before the Populator transfers the data to the Abstract Conceptual Model.
As a post-processor to transform ATS data after the Extractor transfers the
data from the ACM in preparation for exporting that data to target
applications.

data element Also known as ATS data element. An attribute of a logical entity in
an ATS schema. A data element that identifies the subject of a collection of
related data elements can be a root data element for the purpose of mapping.

Glossary

60 System Overview

Data Exporter Part of the Interoperability Server, the Data Exporter moves target
ATS data from the internal work space to target applications after a successful
interoperability run, using the instructions in a data map.

Data Importer Part of the Interoperability Server, the Data Importer moves source
application data into the internal work space as ATS data, using the instructions
in a data map, as the first step of performing an interoperability run.

data map A file in XML format that describes the physical layout of application
data files to be used as the source or target of a interoperability runs.

delimited file A file that uses one or more ASCII characters to identify the
boundaries of field values in a file. See also comma-separated values.

domain expert A person who understands the context and relationships of the
data structures in an application domain, and who works with interoperability
architects to map the data structures from an application transaction set in that
domain to an Abstract Conceptual Model.

element structure The structure mapping for a single mapping statement—a
subset of the map structure.

An element structure consists of the mapping target for the data element, the
mapping target for its root data element, an unambiguous network within the
ACM that connects these mapping targets, and any constraints necessary to
represent the contextual meaning of the data element.

EXPRESS A data specification language, defined as a part of the STEP standard
(ISO 10303–11:1994).

EXPRESS has both lexical and graphical forms. EXPRESS is used in the CIIM
to specify the Abstract Conceptual Model and is one of several possible methods
of specifying an application schema. See also STEP.

EXPRESS-G The graphical form of the EXPRESS language.

Extractor Part of the Interoperability Server, the Extractor transfers data from the
Abstract Conceptual Model to a target application transaction set during an
interoperability run, based on one or more context maps.

FirstSTEP XG A Modulant tool for generating and editing EXPRESS models. This
tool was created by PDIT.

FirstSTEP EXML A Modulant tool that generates a DTD (Document Type
Definition) in a specific format from an EXPRESS schema. This tool was
created by PDIT.

format conversion A conversion definition in which the format of a data element is
specified in terms of other data elements. For example, you can define a
format conversion to specify the format of a date in terms of three other data
elements (day, month, and year).

Glossary

System Overview 61

There are two types of format conversions:

split, where you start with a compound element and break it into sub-
elements
combine, where you define a compound element by concatenating existing
data elements

formula An expression that defines arithmetic operations to perform on one or
more data elements in the domain of a context map (for example, to create
derived attributes). See also data conversion.

information The meaning derived from data about objects (such as facts, events,
things, processes, ideas, and concepts) through the interpretation of the data
within a certain context.

information unit An atomic fact about an identified concept or subject of
interest. In the CIIM, an information unit is the combination of a data element
and its associated root data element.

input conversion A data conversion to perform during the pre-processing phase
of an interoperability run. See also Data Converter.

input mapping statement A mapping statement that tells the Interoperability
Server how to populate an attribute of an Abstract Conceptual Model from a data
element in the domain of a context map. Input mapping statements are
processed by the Populator and ignored by the Extractor.

integration Combining software and hardware components into an overall
system in a tightly coupled manner.

internal work space Used by the Interoperability Server, the internal work space
consists of two types of data sources: one to manage the job queue (known as
the control data source), and one to store internal data for interoperability runs
(known as work data sources)

interoperability The ability of people, organizations, and systems to work
together.

Interoperability API A Java API that lets you perform interoperability runs
programmatically. Using the Interoperability API, you can define jobs that
execute interoperability runs and queue them to run independently.

interoperability architect An expert in the Context-based Information
Interoperability Methodology. An interoperability architect understands the
structure of the Abstract Conceptual Model thoroughly enough to see how the
structure of an ATS schema maps to it. Interoperability architects work closely
with domain experts to understand the specifics of a particular application’s
structure and context.

Interoperability CL A command-line tool for initiating and monitoring
interoperability run.

interoperability environment A collection of applications that must share
information with each other.

Glossary

62 System Overview

interoperability run The Modulant process in which the Interoperability Server
transforms data from one or more source systems through an Abstract
Conceptual Model to one or more target systems.

Interoperability Run Console A client tool that supports the Interoperability
Server and enables users to design, perform, and analyze interoperability runs.

Interoperability Server Part of the Modulant Contextia Interoperability
Platform that populates data from source application transaction sets to the
Abstract Conceptual Model and extracts the transformed data to the target
application transaction set.

See also Data Importer, Data Converter, Populator, Extractor, Data Exporter,
Transformation Manager, JMS conduit, and SOAP conduit.

interoperability strategy An agreed-upon approach used by interoperability
architects that will ensure consistent mappings, based on analysis of common
application information requirements, for the applications in an
interoperability environment. Also known as mapping strategy.

JMS conduit Part of the Interoperability Server that communicates with client
programs using the Java Message Service.

management resource Entities in the Modulant Abstract Conceptual Model that
describe information that can apply to any other type of entities. This
category includes information about dates, documents, people, organizations,
and groups.

map domain The set of data elements whose context is described by a context map.

mapping The process of specifying the relationships between data elements in
the domain of a context map and the entities and attributes of an Abstract
Conceptual Model.

mapping direction Property of a mapping statement that indicates whether to use
the mapping information only to populate the Abstract Conceptual Model
(where the direction is input), only to extract information from a populated
ACM (where the direction is output), or both (where the direction is input/
output).

mapping statement A part of a context map that associates a data element with a
mapping target. Each mapping statement is associated with part of a structure
mapping, called the element structure.

mapping strategy See interoperability strategy.

mapping target Part of a mapping statement. An attribute of the Abstract
Conceptual Model that is associated with a data element in the ATS schema.

map structure A set of element structures that form the structure mapping for a set
of related data elements in a context map.

For a collection of related data elements (a map domain), the structure
mapping includes the context and relationships of all of those data elements,
and is therefore the union of the individual element structures.

Glossary

System Overview 63

meta-data Data about data. Meta-data can include descriptive information
about the context, quality, and condition, or characteristics of the data. In the
CIIM, a context map describes how the ACM is used to represent application
data values and meta-data that capture the meaning, including context, of the
application data.

ontology An explicit representation of the objects and concepts that are assumed
to exist in some area of interest and the relationships that hold among them.

output conversion A data conversion to perform during the post-processing
phase of an interoperability run. See also Data Converter.

output mapping statement A mapping statement that tells the Interoperability
Server how to extract the value of an ACM attribute into an ATS data element.
Output mapping statements are processed by the Extractor and ignored by the
Populator.

PDIT Product Data Integration Technologies, Inc. A leader in the field of
interoperability. A wholly-owned subsidiary of Modulant Solutions, Inc. that
created the tools FirstSTEP XG and FirstSTEP EXML.

Populator A part of the Interoperability Server that transfers imported source
data to an Abstract Conceptual Model based on one or more context maps.

reference attribute An attribute used to relate entities in an Abstract Conceptual
Model. A reference attribute allows an entity to refer to another entity.

root data element A data element that represents the subject or central concept
of a collection of related data elements in a map domain.The mapping target of a
root data element serves as the anchor for the structure mapping of other data
elements that are related to that root data element.

root mapping statement The combination of a root data element and its mapping
target in the ACM. A root mapping statement is the starting point of the
structure mapping for the data elements that are directly related to the root
data element.

root structure The part of a map structure that defines the context and
relationships for the element structures of data elements directly related to aroot
data element.

schema A representation, in a formal syntax, of the structure and data types for
a collection of related data.

Semantic Transformation Method A patent-pending structural data mapping
methodology developed by PDIT. It involves transformation of data between
two or more software programs. It includes both syntactic and semantic
transformation. It forms the core of the Modulant CIIM.

semantics The meaning of data within appropriate context.

SOAP conduit Part of the Interoperability Server that communicates with client
programs using SOAP (Simple Object Access Protocol) messages.

Glossary

64 System Overview

source system An application that is the source of data to be transformed in an
interoperability run.

split A type of format conversion, in which you separate a compound element into
two or more sub-elements.

STEP See Standard for the Exchange of Product Model Data.

Standard for the Exchange of Product Model Data International Standard
ISO 10303 “Product data representation and exchange,” known colloquially
as STEP. STEP is a large, multi-part standard for exchange of data among
engineering applications in several different industry sectors. Modulant has
enhanced several components of STEP. The EXPRESS language is part of
STEP.

structure mapping Specification of the ACM usage that represents application
data and its context. This ACM usage represents the relationship between a
data element and its root data element, together with additional population
requirements and constraints that capture the contextual information
necessary to enable interoperability. See also element structure, map structure,
root structure.

sub-element Result of the decomposition of a compound element into multiple
parts based on a format conversion definition. See also split, combine.

subtype A specialization of a supertype in a data schema. A subtype inherits all of
the properties (attributes, constraints, and meaning) of its supertype. An
entity can be a subtype of more than one supertype (multiple inheritance). An
entity can be both a supertype of one or more entities and a subtype of one or
more entities.

supertype A generalized entity from which other entities (known as subtypes)
inherit properties (attributes, constraints, and meaning). An entity can be
both a supertype of one or more entities and a subtype of one or more entities.

syntax Rules that define how symbols can be combined independent of
meaning.

target system An application that is the destination for data to be transformed
in an interoperability run.

temporary data element A data element in a map domain that is created as part of
a conversion definition. Temporary data elements do not appear in the
application schema.

terminal attribute An attribute of anAbstract Conceptual Model whose data type
is a simple data type, such as STRING or INTEGER. Terminal attributes can
become mapping targets during the mapping process. These are the attributes
into which application data can be populated.

Transformation Manager Part of the Interoperability Server that manages the
processing of interoperability runs.

Glossary

System Overview 65

work data source Part of the internal work space used by the Interoperability
Server, work data store internal data for interoperability runs.

Glossary

66 System Overview

System Overview 67

Index

A
Abstract Conceptual Models

about 17
developing 16

application data
about 19

application information analysis 11
application schema files 19
asynchronous interoperability runs 30

using the Interoperability Run Console 29
ATS

about 18
ATS schemas

about 20
creating 22

B
business process context analysis 11

C
command-line tools

icmd 30
context 6
context accommodation 12
context discovery methods 11
context formalization 12
context map domains 10
context maps 20

about 20
Context-based Information Interoperability

Methodology 7
architecture 9
framework 8
methods 11
principles 7

conversion definitions 22
CXM files 20

about 20

D
data conversions 12
Data Converter 35
data elements 10
Data Exporter 35
Data Importer 34
data maps

creating 20
formats 26

defining population rules 13
domains, of context maps 10

E
embedded server

using 56
Enforce ATS Keys flag 29
Enforce Unique flag 29
EXPRESS modeling language 18
extraction rules 13
Extractor 35

F
FirstSTEP EXML 28
FirstSTEP XG 28
format conversions 12

I
icmd 30
information aggregations 10
information interoperability 2
information units 10
internal work space 34
Interoperability CL 30
interoperability runs

flow 36
performing 24
required files 23
synchronous vs. asynchronous 30

Interoperability Server
components 33

Index

68 System Overview

internal work space 34
run-time flags 29

interoperability strategy, see mapping strategy
ISO standard 10303 18

J
JMS Conduit 35
job queue

lifecycle of an asynchronous job 52

L
Left Join on Keys flag 29
lifecycle of queued job 52

M
map domains 10
mapping process

basic example 21
creating ATS schemas 22
specifying conversion definitions 22
specifying mapping targets 22

mapping strategy 16
example 40
for US Tours and Euro Travel 42

P
PDIT 28
performing interoperability runs 24
population rules 13
Populator 35

Q
queued job

lifecycle 52

R
root data elements 10
root structures 10
run-time flags 29

S
Semantic transformations 29
sidebars

about sidebars xi

EXPRESS modeling language 18
SOAP Conduit 35
specifying conversion definitions 22
specifying mapping targets 22
STEP methodology 18
structure mappings

root structures 10
synchronous interoperability runs 30
Syntax transformations 29

T
Transformation Manager 34
transformation types 29

	List of Figures
	Preface
	Who Should Read this Guide?
	Conventions Used in this Guide
	What’s in this Guide?
	Related Documents

	1� Introducing Information Interoperability
	Enabling Information Interoperability
	Interoperability is About Communication
	The Role of Context

	2� Introducing the CIIM
	Underlying Principles
	The CIIM Framework
	CIIM Architecture
	Data Elements
	Information Units
	Map Domains

	The CIIM Methods
	Context Discovery
	Context Formalization
	Context Accommodation

	3� The Interoperability Process
	Design-time Process: Applying the CIIM
	Develop an Interoperability Strategy
	About Abstract Conceptual Models
	About Application Transaction Sets (ATSs)

	Describe Application Data Formats in Data Maps
	Develop Application Schemas
	Create Data Maps to Describe Physical Structures

	Capture Application Context in Context Maps
	About Context Map Files
	The Mapping Process

	Run-time Process: Achieving Information Interoperability
	Configure Interoperability Run
	Perform Interoperability Run
	Retrieve Target Data in Native Format and Verify Results

	4� Modulant Contextia Tools and Components
	Design-time Tools: The Interoperability Workbench
	The Data Mapper
	The Context Mapper
	FirstSTEP XG and FirstSTEP EXML

	Run-time Tools: The Interoperability Server and its Client Tools
	The Interoperability Run Console
	The Interoperability CL
	The Interoperability Server Administrator
	The Interoperability API

	Inside the Interoperability Server
	Server Components
	Flow of an Interoperability Run

	5� An Interoperability Example
	Introducing the Sample Applications
	Developing a Mapping Strategy
	Creating the Mapping Specifications
	Describing the Data
	Describing the Context

	Performing an Interoperability Run

	6� Architectural Considerations
	Synchronous vs. Asynchronous Interoperability Runs
	Synchronous Operation
	Asynchronous Operation and the Job Queue

	Remote vs. Embedded Servers
	Remote Server Using JMS
	Remote Server Using Web Services and SOAP
	Embedded Server

	Glossary
	Index

