
Modulant Balisarda Mapping Tool Guide 175

9 Using the Modulant Curtana
Data Converter
The Modulant Curtana Data Converter lets you specify additional ways to
transform the data associated with an ATS schema. Some fields in standard
databases do not have direct counterparts in the Abstract Conceptual Model, such
as dates and some names. Before you can map a date field, you must split it into
the day, month, and year parts of the date. Then you can map each part
separately.

The Modulant Curtana Data Converter makes this possible. When your source
ATS contains composite fields, the Data Converter splits them into their
component parts so that the Modulant Curtana Transformation Engine can
properly populate the Abstract Conceptual Model. Then after the Transformation
Engine extracts the data for output, the Data Converter recombines the fields as
needed by the target ATS.

Note: The Data Converter requires you to use Oracle for the internal database.

You specify what you want the Data Converter to do in the XMP (Transformation
MaP) file, which also stores the mapping information for an ATS schema. The
following topics describe the Data Converter and how to modify the XMP file to
specify the necessary conversions:

What is the Modulant Curtana Data Converter?

What Does the Modulant Curtana Data Converter Do?

Planning for Data Conversion

Defining and Mapping Virtual Fields

Specifying Data Conversions

Testing Your Conversion Specification

9 Using the Modulant Curtana Data Converter

176 Modulant Balisarda Mapping Tool Guide

What is the Modulant Curtana Data Converter?
The Modulant Curtana Data Converter is part of the Modulant Curtana
Transformation Engine. It has two parts, a preprocessor and a postprocessor:

If the XMP file corresponding to an input ATS schema contains data
conversion rules, the Transformation Engine calls the Data Converter before
running the Population Engine to populate the Abstract Conceptual Model
with data from the source ATS.

If the XMP file corresponding to the output ATS schema contains data
conversion rules, the Transformation Engine calls the Data Converter after
running the Extraction Engine to output data from the Abstract Conceptual
Model to the target ATS.

Figure 64 shows the role of the Data Converter in the overall flow of a
transformation run.

Figure 64: Where the Data Converter Fits

What Does the Modulant Curtana Data Converter Do?

Modulant Balisarda Mapping Tool Guide 177

What Does the Modulant Curtana Data Converter Do?
The Modulant Curtana Data Converter can perform three types of conversions,
all of which can operate on only a single table:

Extraction: Extract substrings from one column to another (for example,
breaking dates into day, month, and year components, or breaking names into
separate first name and last name parts).

This operation extracts part of the data in a column and places it in a new
column. When you define extractions in the preprocessor phase, the Data
Converter creates a new column in the internal database to hold the result. In
the postprocessor phase, the Data Converter places the final result of an
extraction operation into a field of the target ATS.

You can specify this extraction in two ways:

by index position in the column
by delimiter character

Concatenation: Concatenate separate columns to form a single column (for
example, recombining dates or names).

This operation extracts strings from multiple columns, concatenates them,
and places the result into a new column. When you define concatenations in
the preprocessor phase, the Data Converter creates a new column in the
internal database to hold the result. In the postprocessor phase, the Data
Converter places the final result of a concatenation operation into a field of
the target ATS.

Calculation: Perform arithmetic operations (addition, subtraction,
multiplication, division) on one or more numeric fields (for example, to create
derived attributes such as a total price, by calculating the sales tax on a price
and adding the tax to the price).

This operation performs the requested operations on values from multiple
columns and places the result into a new column. When you define arithmetic
calculations in the preprocessor phase, the Data Converter creates a new
column in the internal database to hold the result. In the postprocessor phase,
the Data Converter places the final result of a calculation operation into a
field of the target ATS.

When you identify fields in your source data that require any of these types of
conversion, you must use the Mapping Tool to create data elements for each of the
“virtual” columns that the Data Converter will create in its internal database
during a transformation run, and map each of these data elements separately. For
instructions, see “Defining and Mapping Virtual Fields” on page 179.

You specify which types of conversions you want the Data Converter to perform
on your ATS schema in the dataConverter section of the XMP file. For instructions,
see “Specifying Data Conversions” on page 181.

9 Using the Modulant Curtana Data Converter

178 Modulant Balisarda Mapping Tool Guide

Planning for Data Conversion
As you develop your mapping strategy, you might discover that your ATS
schema contains fields for which there is no direct mapping target in the Abstract
Conceptual Model. For each of these fields, analyze the structure to determine
how you want to map it.

Figure 65 shows the steps you take to implement data conversion, beginning with
analyzing your ATS schema. The following sections describe the remaining
phases.

Figure 65: Implementing Data Conversion

Identifying Extraction Conversions
For example, if you have a field that contains dates, you must use different
mapping targets for the month part, the day part, and the year part. Therefore,
you must have a separate data element for each part before you can map it. In
cases like this, you define an extraction conversion to create each of the individual
fields during the transformation process.

Identifying Concatenation Conversions
As another example, suppose your ATS schema stores the year and the century in
separate fields. Because the Abstract Conceptual Model only has an attribute for
mapping years (see “Date and Time” on page 77), you must combine the century
and the year information into a single data element that you can map. In this case,
you define a concatenation conversion to create a composite century-and-year
field.

Identifying Arithmetic Conversions
In addition, your ATS schema might have a group of fields from which you derive
a value that your application needs. If you want to map the derived field
separately, you can use the data converter to specify an arithmetic calculation.

For example, you might have information about sales figures, from which you
calculate a salesperson’s commission. Rather than store the commission amount
in the database, your application calculates it separately. But in this case, you
might want to map the commission value to its own mapping target in the
Abstract Conceptual Model. To do this, you define an arithmetic conversion.

Defining and Mapping Virtual Fields

Modulant Balisarda Mapping Tool Guide 179

Defining and Mapping Virtual Fields
Once you have identified the fields in your source ATS schema that require
conversion, and you have chosen the mapping targets you want to use, you must
use the Mapping Tool to define new data elements that correspond to the
“virtual” columns the Data Converter will create in its internal database during
the transformation run.

To define data elements corresponding to virtual fields:

1 To create a new attribute:
a Select Edit>ATS Definition.

The Edit ATS Definition dialog box appears:

b From the ATS Entity list at the top, select the ATS entity associated with
this conversion.

c In the Attribute Name field, type the name of the new data element.

9 Using the Modulant Curtana Data Converter

180 Modulant Balisarda Mapping Tool Guide

Tip: If you are defining a new data element to hold the result of an
extraction from an existing data element, select the existing data element
first. This lets you add a suffix to the current name; for example, DATE can
become DATE_MM, to indicate the month part.

d Make any necessary changes to the remaining properties of the new data
element in the Type, Length, Default Value, and IsKey fields.

e Click Add Attribute, and then click Close.
2 To add the new data element to a data element group:

a Select Mapping>Add>Data Element.
b In the Add Data Element dialog box, select the data element group.
c In the Data Element Name field, type the name of the new data element.

Tip: To see exactly how you spelled the new data element’s name, you
can select it from the ATS Attribute for Data Element drop-down list before
you type it.

d From the ATS Entity for Data Element and ATS Attribute for Data Element
drop-down lists, select the corresponding entity and attribute names.

e In the Data Element Mapping ID field, type a mapping ID for the new data
element.

Tip: To determine the next available mapping ID for this data element
group, scroll through the list of data elements at the top. Use the same
prefix for the new mapping ID, and assign the next sequential number.
Prefixes are case-sensitive.

f Leave the Data Element Mapping Usage set to the default value Input/
Output.

g Click Apply, and then click Close.
3 To map each new data element:

a Select Mapping>Add>Mapping Target.
b Specify the mapping target, as described in Chapter 7, “Mapping Data

Elements.”
c Complete the structure mapping, as described in “Defining Structure

Mappings” on page 157.
4 Map the remaining data elements in your ATS schema.
5 Connect the data elements to the structure mappings, as described in

Chapter 8, “Defining the Transformation.”
6 Select Tools>Generate Transformation Map to validate the mapping

specification.
7 Select File>Export>XMP to create an XMP file with mapping information.

Once you have an XMP file, you can specify the data conversion information for
the Transformation Engine.

Specifying Data Conversions

Modulant Balisarda Mapping Tool Guide 181

WARNING: If you import an XMP file that contains information in the dataConverter section,
the Mapping Tool only preserves the data conversion specifications if you export
mapping information to the same XMP file. If you export to a different file, you
must copy the dataConverter section and paste it to the newly exported file.

Specifying Data Conversions
To define data conversion specifications, you add conversion definitions to the
dataConverter section of the XMP file, after the mappingStatement elements. The
Data Converter executes the conversions in the order in which the conversion
definitions appear in the XMP file.

Note: As you add conversion specifications, be careful not to make any changes
to the mappingStatemement elements generated by the Mapping Tool.

Anatomy of the dataConverter Element
An XMP file can have only one dataConverter element, following the
mappingStatement elements. Inside this element, you define conversionList
elements, each of which specifies a set of conversions you want the Data
Converter to perform.

Figure 66 shows the structure of the dataConverter element as it occurs in the
XMP file, based on the DTD (document type definition). For a full description of
the XMP file, see Appendix B, “XMP Reference.”

Defining “Cascading” Conversions

Depending on the complexity of your database, you might encounter situations
where you want to define a data conversion that creates one result, and then
use that result in a subsequent conversion operation.

For example, suppose your database stores hotel rates in U.S. dollars and airline
fares in Swiss francs. To find out how much a person’s total expenses will be,
you must first convert the airline fare to dollars. Then you can add up the rates
to compute the total. To do this, you define two conversions in the XMP file:
first the currency conversion, followed by the calculation.

If the goal is to derive the result of the calculation, you might only need to
define a new data element for the end result and map that data element. Or,
depending on the structure of your data, you might determine that it is helpful
to define mapping targets for both the intermediate field and the end result.

9 Using the Modulant Curtana Data Converter

182 Modulant Balisarda Mapping Tool Guide

Figure 66: Structure of the dataConverter Element

The Data Converter expects two conversionList elements, one for conversions to
perform on the input data from a source ATS during the preprocessing phase (the
PREPROCESSOR list), and one for conversions to perform on the output data to the
target ATS during the postprocessing phase (the POSTPROCESSOR list).

Example 1 shows the standard conversionList elements and how they appear in
the XMP file.

Example 1: Standard conversionList Elements
<xmp>

...
<dataConverter>

<conversionList name="PREPROCESSOR">
</conversionList>
<conversionList name="POSTPROCESSOR">
</conversionList>

</dataConverter>
</xmp>

Note: The Data Converter ignores any conversionList elements whose name
attribute has a value other than PREPROCESSOR or POSTPROCESSOR. These values
are case-sensitive.

Specifying Data Conversions

Modulant Balisarda Mapping Tool Guide 183

To define a data conversion, you add one or more conversion elements to a
conversionList. Each conversion element defines one conversion operation, using a
set of attributes and two subelements that define the conversion itself:

One output element that specifies the column to hold the result of the
conversion.

For preprocessor conversions and intermediate results of cascading
conversions, this element refers to a column that the Data Converter will
create. For the final results of postprocessor conversions, this element refers to
a column in the target ATS.

One or more param elements that define the parameters for the conversion.

In the conversion element, use the type attribute to specify this type of extraction:
EXTRACTSUBSTR, EXTRACTDELIM, CONCAT, or ARITHMETIC. Note that these values
of the type attribute must be in upper-case letters.

The conversion element also contains an attribute that defines the name of the
database table that contains the fields to convert.

For example, the following conversion element defines a substring extraction:

<conversion type="EXTRACTSUBSTR" table="Employee"
</conversion>

The following sections describe the ways to create conversion definitions:

Defining Substring Extractions

Defining Data Concatenations

Defining Arithmetic Operations

Testing Mappings that Require Data Conversion

As a general practice, the best way to test a mapping specification is to
perform a transformation run with the same ATS data as both the source and
the target of the transformation. In this case, you use the same XMP file to
specify the mappings for both the source ATS and the target ATS.

If your ATS schema contains fields that require data conversion during either
the preprocessing phase or the postprocessing phase, you must account for
both phases as you do your initial testing.

In other words, for this test transformation run, if you perform extractions to
split some fields in the preprocessor phase before running the Population
Engine, you must define concatenations that recombine those fields during
postprocessing after running the Extraction Engine.

9 Using the Modulant Curtana Data Converter

184 Modulant Balisarda Mapping Tool Guide

Defining Substring Extractions
A substring extraction separates part of the data in a field into a separate column
in the internal database. For example, you use substring extractions to split date
fields into month, day, and year components. You can also use this type of
conversion to split name fields into first and last names.

The Data Converter provides two types of string extraction:

Extraction by Index Position

Use extraction by index position if you know the offset position in a string
where you want to split a field.

Extraction by Delimiter

Use extraction by delimiter if you want to split a field after a particular
character or character string. In this type of conversion, the delimiter can be
more than a single character.

Extraction by Index Position
In the conversion element, you specify this type of extraction as EXTRACTSUBSTR:

<conversion type="EXTRACTSUBSTR" ...>

Inside the conversion element, you provide the following elements:

One output element that specifies the column to hold the result of the
conversion.

One or more param elements, each of which has one of the following name
attributes:

name=”input”: the field that contains the data to split
Use a column element with a name attribute to specify the name of the
input field.
name=”start”: the starting position of the string to extract
Use a constant element with a value attribute to specify the position.

Note: The Data Converter counts index positions starting with 1.

name=”length”: the number of characters to extract
Use a constant element with a value attribute to specify how many
characters.

Note: The values of the name attribute must be in all lower-case letters.

Specifying Data Conversions

Modulant Balisarda Mapping Tool Guide 185

Table 8 shows an example of a date field and the day, month, and year fields after
extraction. Because the month and day each always have two digits, you can
define each substring to extract based on its starting position in the original field.

Example 2 shows conversion elements that define this extraction.

Example 2: Substring Extraction by Position
<conversion type="EXTRACTSUBSTR" table="Employee">

<output>
<column name="HMonth" type="varchar(2)"/>

</output>
<param name="input">

<column name="HDate"/>
</param>
<param name="start">

<constant value="1"/>
</param>
<param name="length">

<constant value="2"/>
</param>

</conversion>
<conversion type="EXTRACTSUBSTR" table="Employee">

<output>
<column name="HDay" type="varchar(2)"/>

</output>
<param name="input">

<column name="HDate"/>
</param>
<param name="start">

<constant value="3"/>
</param>
<param name="length">

<constant value="2"/>
</param>

</conversion>
<conversion type="EXTRACTSUBSTR" table="Employee">

<output>
<column name="HYear" type="varchar(4)"/>

</output>
<param name="input">

<column name="HDate"/>
</param>

Table 8: Example of Substring Extraction by Position

Input Output

HDate HDay HMonth HYear

‘07/09/2001’ 9 7 2001

9 Using the Modulant Curtana Data Converter

186 Modulant Balisarda Mapping Tool Guide

<param name="start">
<constant value="7"/>

</param>
<param name="length">

<constant value="4"/>
</param>

</conversion>

Extraction by Delimiter
In the conversion element, you specify this type of extraction as EXTRACTDELIM:

<conversion type="EXTRACTDELIM" ...>

Inside the conversion element, you provide the following elements:

One output element that specifies the column to hold the result of the
conversion.

One or more param elements, each of which has one of the following name
attributes:

name=”input”: the field with the data to split
Use a column element with a name attribute to specify the input field.
name=”delim”: the delimiter string (one or more characters long) that
separates the strings to be extracted
Use a constant element with a value attribute to specify the string.
name=”token”: specifies which extracted string goes in which new field;
in other words, when the value of token is 1, the first substring (before the
first delimiter) goes in the field defined by this conversion element

Note: You can use negative numbers to identify strings extracted from
the end of the string, rather than from the beginning. In other words, a
token value of –1 extracts the first delimited substring from the end.

Use a constant element with a value attribute to specify the extraction
order.

Note: The values of the name attribute must be in all lower-case letters.

Table 9 shows an example of extracting the first name and last name from a name
field. In this example, the name field contains the last name followed by the first
name, separated by a number sign (#).

Table 9: Example of Substring Extraction by Delimiter

Input Output

Name FirstName LastName

‘Doe#Jane’ ‘Jane’ ‘Doe’

‘Katana#Jean-Paul’ ‘Jean-Paul’ ‘Katana’

Specifying Data Conversions

Modulant Balisarda Mapping Tool Guide 187

Example 3 shows conversion elements that define this extraction.

Example 3: Substring Extraction by Delimiter
<conversion type="EXTRACTDELIM" table="Employee">

<output>
<column name="FirstName" type="varchar(100)"/>

</output>
<param name="input">

<column name="Name"/>
</param>
<param name="delim">

<constant value="#"/>
</param>
<param name="token">

<constant value="2"/>
</param>

</conversion>
<conversion type="EXTRACTDELIM" table="Employee">

<output>
<column name="LastName" type="varchar(100)"/>

</output>
<param name="input">

<column name="Name"/>
</param>
<param name="delim">

<constant value="#"/>
</param>
<param name="token">

<constant value="1"/>
</param>

</conversion>

Defining Data Concatenations
Concatenation combines two or more data fields into a new field. For example,
you can use concatenation to recreate date fields from individual month, day, and
year fields after extraction. You can also use this type of conversion to combine
separate fields to create a new field you want to map. If your ATS schema has
separate fields for the century and the year, you can combine them into a single
field that you can map to date.year_component.

In the conversion element, you specify concatenation as CONCAT:

<conversion type="CONCAT" ...>

Inside the conversion element, you provide the following elements:

One output element that specifies the column to hold the result of the
conversion.

9 Using the Modulant Curtana Data Converter

188 Modulant Balisarda Mapping Tool Guide

One or more param elements, each of which has one of the following name
attributes:

name=”input”: a field with data to combine
Use a column element with a name attribute to specify each input field, in
the order they appear in the concatenation.
name=”delim”: a delimiter string to include between concatenated values
Use a constant element with a value attribute to specify the string.
name=”trim”: specifies whether to trim white space (spaces, tabs) from
the end of string fields before concatenating them
Use a constant element with a value attribute of Y (for Yes) or N (for No) to
specify whether to trim blanks.

Note: The values of the name attribute must be in all lower-case letters.

Table 10 shows an example of combining day, month, and year fields to create a
date. In this example, the Data Converter placed slashes (/) between the
concatenated fields.

Example 4 shows conversion elements that define this concatenation.

Example 4: Concatenation
<conversion type="CONCAT" table="Employee">

<output>
<column name="HDate" type="char(10)"/>

</output>
<param name="input">

<column name="HDay"/>
<column name="HMonth"/>
<column name="HYear"/>

</param>
<param name="delim">

<constant value="/"/>
</param>
<param name="trim">

<constant value="Y"/>
</param>

</conversion>

Table 10: Example of Concatenation

Input Output

HDay HMonth HYear HDate

‘12’ ‘09’ ‘1987’ ‘09/12/1987’

Specifying Data Conversions

Modulant Balisarda Mapping Tool Guide 189

Defining Arithmetic Operations
You can define conversions that perform calculations using the values of one or
more fields in a table and store the result in a new column in the internal
database. Your calculations can include combinations of the standard arithmetic
operations: addition, subtraction, multiplication, and division. All calculations
operate on string data whose data type is varchar.

In the conversion element, you specify calculations as ARITHMETIC:

<conversion type="ARITHMETIC" ...>

Inside the conversion element, you provide the following elements:

One output element that specifies the column to hold the result of the
conversion.

One or more param elements, each of which has one of the following name
attributes:

name=”expression”: a control string that specifies the calculation you
want to perform
Use a constant element with a value attribute to specify the expression,
using the following symbols:

name=”input”: a field with data to operate on
Use a column element with a name attribute to specify each input field, in
the order they appear in the arithmetic expression.

Note: The values of the name attribute must be in all lower-case letters.

Table 11 shows an example of calculating the sale price of an item with a 10%
discount.

Example 5 shows conversion elements that define this calculation.

? a data value from an input field

+ addition

– subtraction

* multiplication

/ division

() for grouping operations

Table 11: Example of Arithmetic Calculation

Input Output

Price Discount SalePrice

50 10 45

9 Using the Modulant Curtana Data Converter

190 Modulant Balisarda Mapping Tool Guide

Example 5: Arithmetic Operations
<conversion type="ARITHMETIC" table="Product">

<output>
<column name="SalePrice" type="varchar(4)"/>

</output>
<param name="expression">

<constant value="? * (1 – ?/100)"/>
</param>
<param name="input">

<column name="Price"/>
<column name="Discount"/>

</param>
</conversion>

Testing Your Conversion Specification
After adding conversion definitions to your XMP file, you can test the results of
the conversion specifications by running a data transformation, using either the
Modulant Curtana Analyst Tool or an application you write using the Lifecycle
Manager API. For information about the Lifecycle Manager API, see the Modulant
Curtana Developer’s Guide.

To test your conversion specification using the Analyst Tool, you must specify the
locations of the XMP files that contain the conversion definitions. To do this, you
modify the file dataconverter.xml in the conf directory of your Modulant Curtana
platform installation. For information about the format of this file, see
Appendix C, “dataconverter.xml Reference.”

The Transformation Engine validates structure of the XMP file against the DTD
before either data conversion phase. If the Data Converter encounters an error
during either data conversion phase, the transformation run stops at that point. If
this happens, check the log file curtana.log in the logs directory of your Modulant
Curtana installation.

If the transformation run is successful, check the output for accuracy. If the results
do not match what you expect, review the corresponding conversion
specifications in the XMP file.

Testing Your Conversion Specification

Modulant Balisarda Mapping Tool Guide 191

Log File Messages
As the Data Converter runs, it writes status messages to the log file. This section
lists the informational, warning, and error messages you might see, and explains
what they mean.

Informational Messages
The Data Converter logs the following messages to inform you of its progress
through a transformation run:

Loading conversions from list {<conversionList> name}

The Data Converter has identified a conversionList element in your XMP file
with the specified name, and is reading the conversion specifications in that
list.

Preparing Data Converter for {<conversionList> name}

The Data Converter is preparing to execute the conversion specifications in
the conversionList element with the specified name.

Identifying useless conversions

The Data Converter is looking for conversion definitions that are either
redundant or could potentially conflict with other conversions.

Creating input column in ATS for {<conversionList> name}

The Data Converter is creating columns in the internal database to process
one of the conversion specifications in the conversionList element with the
specified name.

Checking input column in ATS for {<conversionList> name}

The Data Converter is verifying columns it has created in the internal
database to process one of the conversion specifications in the conversionList
element with the specified name.

Aggregating conversion rules

The Data Converter is combining the conversion specifications it has read, in
preparation for processing them.

Executing conversions in {<conversionList> name}

The Data Converter is performing the conversions defined in the conversion
specifications in the conversionList element with the specified name.

9 Using the Modulant Curtana Data Converter

192 Modulant Balisarda Mapping Tool Guide

Warning Messages
The Data Converter logs the following warnings to inform you of situations it
encounters during a transformation run:

<dataConverter> tag not found. Data Converter will be ignored.

The XMP file does not contain a dataConverter element with conversion
specifications; therefore, the Transformation Engine will not call the Data
Converter for this transformation run.

Conversion list named {<conversionList> name} not found in XMP. Data
Converter will be ignored.

The XMP file does not contain a conversionList element with the specified
name (either PREPROCESSOR or POSTPROCESSOR); therefore, the
Transformation Engine will not call the Data Converter to perform
conversions for the specified phase.

Overwritten conversion: {code for conversion} is overwritten by {code for
conversion}

Two conversion specifications conflict. The Data Converter performs only the
last of the listed conversions. This message shows you the a description of the
conflicting conversion specifications.

Error Messages
The Data Converter logs the following errors to inform you of problems it
encounters during a transformation run:

Cannot drop column {column_name} in table {table_name}.

During database cleanup, Oracle has returned an error message after
attempting to delete the specified column from the internal database after
performing data conversions. The error log will also contain the SQL error
message from Oracle.

Error when executing the conversion [SQL = {SQL}]

Oracle encountered an error executing the specified SQL code during a
conversion. The error log will also contain the SQL error message from
Oracle.

SQL error on colExist

Oracle could not find a column that the Data Converter expected to be there.
The error log will also contain the SQL error message from Oracle.

ATS source tables not ready for processing

Either Oracle couldn’t create one or more requested columns or the input for
a conversion is invalid. If the Data Converter encounters this error, the error
log will also contain one or more of the following errors:

Missing column colName in table tableName
Cannot create column colName in table tableName with type dataType

Testing Your Conversion Specification

Modulant Balisarda Mapping Tool Guide 193

Errors occurred when parsing the XMP

The Data Converter encountered an error while reading the XMP file, usually
an invalid parameter (either a missing parameter or too many parameters). In
this case, the error log will contain one or more of the following errors:

Cannot instantiate conversion from XMP; check the params: XML code
Missing output column
Missing input(s)
The trim value must be “Y” (default) or “N”
The number of inputs must match the number of ‘?’ in the expression
Missing expression
The token must have a numeric value, different from 0
Missing delimiter
Missing token
Token must have a numeric value
Missing start
Start must have a numeric value
Missing length
Length must have a numeric value
Missing parameter name=‘value‘ in: XML code
This message indicates that something is missing or incorrect in the
conversion specification; for example, you might have defined an
arithmetic conversion without specifying an expression.

9 Using the Modulant Curtana Data Converter

194 Modulant Balisarda Mapping Tool Guide

	9� Using the Modulant Curtana Data Converter
	What is the Modulant Curtana Data Converter?
	What Does the Modulant Curtana Data Converter Do?
	Planning for Data Conversion
	Identifying Extraction Conversions
	Identifying Concatenation Conversions
	Identifying Arithmetic Conversions

	Defining and Mapping Virtual Fields
	Specifying Data Conversions
	Anatomy of the dataConverter Element
	Defining Substring Extractions
	Extraction by Index Position
	Extraction by Delimiter

	Defining Data Concatenations
	Defining Arithmetic Operations

	Testing Your Conversion Specification
	Log File Messages
	Informational Messages
	Warning Messages
	Error Messages

