Modulant Curtana
Developer’s Guide

Version 1.0
September 2001

Modulant Curtana Developer’s Guide, version 1.0
Copyright © 2001 Modulant Solutions, Inc. All rights reserved.
September 2001, Version 1.0

Ownership of Materials. This manual, as well as the software described in it, is furnished under
license and may be used or copied only in accordance with the terms of such license. The contents of
this manual are furnished for informational use only, is subject to change without notice, and should
not be construed as a commitment by Modulant. Modulant assumes no responsibility or liability for
any errors or inaccuracies that may appear in this book.

This manual is protected by copyright and distributed under licenses restricting its use, copying,
translation, distribution, and decompilation. Except as permitted by such licenses, no part of this
manual may be reproduced in any form by any means without prior written authorization of
Modulant. Except as expressly provided herein, Modulant grants no express or implied rights to
anyone under any patents, copyrights, trademarks, trade names, or trade secret information with
respect to the contents of the manual.

Ownership of Trademarks. The trademarks, service marks, product names, company names or logos
and other marks displayed in the manual are the property of Modulant Solutions, Inc. or other third
parties. Any use of trademarks, service marks, product names, company names or logos, and other
marks, including the reproduction, modification, distribution, or republication of same without the
prior written permission of the owner is strictly prohibited.

Modulant, the Modulant logo, Curtana, and Balisarda are trademarks of Modulant Solutions, Inc.
Other trademarks, service marks, trade names and company logos referenced are the property of their
respective owners.

Disclaimers. THIS MANUAL IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID. FURTHER MODULANT DOES NOT WARRANTY,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF
THE USE, OF THE WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Notice to U.S. Government Users. All Modulant products and publications are commercial in
nature. The software and documentation are “commercial items,” as that term is defined at 48 C.ER.
§2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.E.R. §227.7202, as applicable.
Consistent with 48 C.ER. §12.212 or 48 C.E.R. §§227.7202-1 through 227.7202-4, as applicable, the
Commercial Computer Software and Commercial Computer Software Documentation are licensed to
U.S. Government end users (A) only as Commercial Items and (B) with only those rights as are
granted to all other end users pursuant to the terms and conditions set forth in the Modulant standard
commercial agreement for this software. Unpublished rights reserved under the copyright laws of the
United States.

Table of Contents

Listof Figures. i i et ettt eeannas v
Listof Tables i i vii
List of Examples. i e ix
Preface. e Xi
Who Should Read this Guide? xi
Conventions Used inthisGuide. o ool xii
What'sinthisGuide? xiii
Related Documents. xiii
TlIntroduction........ i e 1
The Data Transformation Process. i 2
Specifying a Transformation Job 3

The Life Cycleof a Queued Job........ 4

2 Using the Lifecycle Manager APl i 7
Configuring the Modulant Curtana Transformation Engine............................. 8
Setting Up the Runtime Environment L 9
Invoking the Lifecycle Manager i 10
AddingaJobtotheQueue 11
Getting the Statusof aJob 12
Removing a Job fromthe Queue. 15
Using the Lifecycle Manager from the Command Line 17
Running the Lifecycle Queue. 18
Adding a Transformation Job tothe Queue. 18
Getting the Statusof aQueued Job........ 19
Removing a Transformation Job from the Queue............ 20

Modulant Curtana Developer’s Guide

3 Lifecycle Manager APl Reference 21

LifecycleManager Class. i 22
addJob() ..o 23
getInstance(). 24
getfjobUpdate(). ... 24
TeMOVEJOD() - o ottt 25

QueuedJobInfo Interface.co it 26
getConfigFilePath(). 27
getErrorFilePath() 27
getlD() . .o 27
getRunEndTime() ... 28
getRunStartTime(). 28
getStatus().o 29
getStatusCode() 30
getStatusMessage() 30
getSubmitTime()o 31

LifecycleQueue Class. 31

A run_config.xmlReference........... o i, 35

section name="engine" 37

section name="atsSource” 38

section name="atsTarget" 39

B Configuring Database Connections 41

Editing config.xml 43

Editing datasources.xml 43
Specifying the Work Data Source............... oL 44
Specifying the Control Data Source i 45

Index e e e 47

iv. Modulant Curtana Developer’s Guide

List of Figures

Figure 1: The Role of the Lifecycle Manager............... 2
Figure 2: The Lifecycle Manager Queue it 4
5

Figure 3: LifeCycleofaQueuedJob

Modulant Curtana Developer’s Guide v

List of Figures

vi Modulant Curtana Developer’s Guide

List of Tables

Table 1: Specifying Transformation RunStages...............o .. 3
Table2: Queued Job Status Values.t e 29
Table 3: The Engine Section of the ConfigurationFile 37
Table 4: The ATS Source Section of the Configuration File 39
Table 5: The ATS Target Section of the Configuration File............................. ... 40
Table 6: The Lifecycle Manager Section of config.xml.................. 43
Table 7: The Work Data Source Section of datasources.xml............................... 44

Modulant Curtana Developer’s Guide vii

List of Tables

viii Modulant Curtana Developer’s Guide

List of Examples

Example 1:
Example 2:
Example 3:
Example 4:
Example 5:
Example 6:
Example 7:
Example 8:
Example 9:

Starting the Lifecycle Manager and AddingaJob............................ 11
Getting Status Information Abouta QueuedJob..................... 13
Removing a Transformation Job from the Queue 15
LifecycleQueue Usage Message ...t ... 18
Adding a Job from the Command Line..................................... 19
Getting the Statusof aQueued Job.o 19
Removing a Job fromthe Queue.l 20
Configuration File Syntax 35
Database Connection FileSyntaxl 42

Modulant Curtana Developer’s Guide

ix

List of Examples

X Modulant Curtana Developer’s Guide

Preface

The Modulant Curtana Interoperability Platform marks the first release of
Modulant’s revolutionary toolset for creating true data interoperability. These
tools pave the way to move from application integration and custom solutions to
a more universal solution.

The Modulant Curtana Developer’s Guide describes how to use the Lifecycle
Manager API to define a queue of transformation jobs to run independently of the
Modulant Curtana Analyst Tool.

This preface contains the following topics:
® Who Should Read this Guide?

m Conventions Used in this Guide

m What’s in this Guide?

m Related Documents

Who Should Read this Guide?

The audience for the Modulant Curtana Interoperability Platform includes
integration architects, domain experts, and software developers.

m Integration architects create the mappings from data sources to the Abstract
Conceptual Model, and perform transformation runs.

® Domain experts work with integration architects to help them understand
both the structure and the context of their community’s data.

m Java programmers can use the Lifecycle Manager API to automate the process
of transforming data from one or more data sources to another.

This guide assumes that you are familiar with the following topics:

m The Windows operating system

m Data modeling and XML representation of data

®m Your application domain

m Relational database management systems (RDBMSs), including Oracle

B Java programming

Modulant Curtana Developer’s Guide xi

Preface

Conventions Used in this Guide

The manuals in the Modulant Curtana Interoperability Platform documentation
set use the following typographic conventions:

bold text File names, XML elements, user interface controls, and
language keywords.

bold italic text Variable elements; for example, parameters in code syntax.

italic text New terminology; also emphasized words and book titles.

SMALL CAPS Names of keys on the keyboard.

monospace text Examples, such as XML fragments or Java code; or text you
type exactly as it appears.

Descriptions of procedures also use the following conventions:

File > Import A menu path to follow; in this example, from the File menu,
select Import.

CTRL+C Press both keys at the same time.

EsCcFI Press and release each key in succession.

The manuals contain notes, tips, and warnings that provide particular
information, as follows:

m Notes provide related information that does not fit directly into the flow of the
surrounding text.

m Tips provide hints containing shortcuts or alternative ways of accomplishing
a task.

m Warnings contain critical information that could prevent physical damage to
equipment, data, or people.

Some of the diagrams in the manuals use EXPRESS-G graphical notation. For an
explanation of the symbols in these diagrams, see the Modulant Balisarda Mapping
Tool Guide.

Discussions of XML files contain diagrams that show the structure of the
associated DTDs (document type definitions). Each of these diagrams contains a
legend describing the symbols in the diagram.

About Sidebars

As you read the documentation, you will encounter information contained in
sidebars like this one. These sidebars provide background material related to
the surrounding information.

xii Modulant Curtana Developer’s Guide

What's in this Guide?

What's in this Guide?

This guide contains the following topics:

Chapter 1, “Introduction,” describes the basic operation of the Lifecycle
Manager API and how it can queue transformation run jobs.

Chapter 2, “Using the Lifecycle Manager API,” lists the things you can do
with the Lifecycle Manager API, and shows examples of how to accomplish
each task.

Chapter 3, “Lifecycle Manager API Reference,” describes the major classes
and interfaces in the Lifecycle Manager API, with a description of each of the
public methods.

Appendix A, “run_config.xml Reference,” shows the format of the
configuration file that you create to specify the parameters of a
transformation run job.

Appendix B, “Configuring Database Connections,” describes how to modify
the system configuration files to specify the database connection information
required by the Lifecycle Manager.

Related Documents

In addition to this guide, the Modulant Curtana Interoperability Platform
Documentation Library contains the following manuals:

System Owverview: Introduces the Modulant Curtana Interoperability Platform
and the associated methodology, and describes all of the included tools and
components.

Modulant Balisarda Mapping Tool Guide: Describes the mapping process, the
elements of the Abstract Conceptual Model, and how to use the Modulant
Balisarda Mapping Tool to create a mapping specification.

Modulant Curtana Analyst Tool Guide: Provides detailed explanations of each
of the parts of the Modulant Curtana Analyst Tool, with information on
troubleshooting the results of data transformations.

Installation Guide: Describes the system requirements for the Modulant
Curtana Interoperability Platform, and walks you through the installation
and configuration process.

In addition to the printed documents, your Modulant Curtana installation
contains a complete online Documentation Library, in the docs subdirectory. You
can find the online Documentation Library in both HTML and PDF format.

To access the Modulant Curtana Documentation Library:

» From the Windows desktop, select

Start>Programs > Modulant > Documentation Library.

Modulant Curtana Developer’s Guide xiii

Preface

xiv. Modulant Curtana Developer’s Guide

1

Introduction

The Modulant Curtana Interoperability Platform is a collection of tools and
components that enable interoperability between different types of machines,
platforms, and applications. It fosters interoperability by sharing data—including
the data’s full semantics and the context of the data usage. Preserving semantics
and context enables the Modulant Curtana Transformation Engine to resolve
potential conflicts in incompatible data.

To create true interoperability, the Modulant Curtana platform transforms data
from one source to another by mapping each data source to an abstract
representation—the Abstract Conceptual Model. The Modulant Curtana
Transformation Engine reads mapping specifications for each data source (known
as Application Transaction Sets, or ATSs) and populates the Abstract Conceptual
Model with data from one or more source ATSs. Then it extracts the data from the
Abstract Conceptual Model to a target ATS, preserving native context through the
entire process.

To perform these data transformations, or transformation runs, you can either use
the Modulant Curtana Analyst Tool to define and monitor each run, or you can
use the Lifecycle Manager API to automate the process and run transformations
as batch jobs.

Depending on your system environment, you can use both the Analyst Tool and
the Lifecycle Manager API, or you can use either method independently of the
other. The Modulant Curtana platform uses an internal database to manage the
process of a transformation run. If you use both the Analyst Tool and the
Lifecycle Manager API, you are responsible for coordinating concurrent use of
this internal database.

The Lifecycle Manager API creates a queue of transformation jobs, which it

processes in order. Using this queue, you can define batch transformation jobs to
run without operator intervention. To specify a transformation run as a batch job,
you create a run configuration file in XML format with the parameters of the job.

The following topics introduce the APIs you can use to automate Modulant
Curtana transformation runs:

m The Data Transformation Process
m The Life Cycle of a Queued Job

Modulant Curtana Developer’s Guide 1

1 Introduction

The Data Transformation Process

Source:
ATS1

Source:

AN
ATS2

Source:
ATS3

SMP3

Figure 1 shows how the Lifecycle Manager controls a transformation run with
three source ATSs.

Figure 1: The Role of the Lifecycle Manager

1

[

Lifecycle Manager

Modulant Modulant
Data)) Data
Population Extraction
Converter Engine Engine Converter
(pre- {(post-
process) process)

Modulant Curtana Transformation Engine

g

Apstract Conceptual

Model

To transform data from a source ATS through the Abstract Conceptual Model to a
target ATS, the Transformation Engine goes through the following stages:

1
2

Read the run configuration file.

For each source ATS:

a Read the XML DTD and the XMP (XML MaP) file for that ATS.
b Load the ATS data into the internal database.

c If the XMP file contains a PREPROCESSOR conversion list, invoke the
Modulant Curtana Data Converter to perform the specified conversions.

Invoke the Population Engine to populate the Abstract Conceptual Model
with the source ATS data.

Invoke the Extraction Engine to extract data from the Abstract Conceptual
Model into the target ATS tables in the internal database.

If the XMP file for the target ATS contains a POSTPROCESSOR conversion list,
invoke the Data Converter to perform the specified conversions.

Extract the target ATS data from the internal database in XML format.

2 Modulant Curtana Developer’s Guide

Specifying a Transformation Job

The Data Transformation Process

To define a transformation job, you create a configuration file in XML format with
sections that specify the locations of the source ATSs, including the data file, the
schema in XML format, and the mapping specification (XMP file). For
information, see Appendix A, “run_config.xml Reference.”

Table 1 shows where to specify the parameters associated with each part of a

transformation run.

Table 1: Specifying Transformation Run Stages

For more information, see:

Fill in:
Transformation Engine The engine section of the run
configuration settings configuration file

One or more source ATSs The atsSource section of the run
configuration file

Data conversion during the The PREPROCESSOR configurationList
preprocessor phase element of the XMP file associated
with a source ATS

The target ATS The atsTarget section of the run
configuration file

Data conversion during the The POSTROCESSOR configurationList
postprocessor phase element of the XMP file associated
with the target ATS

"y

“section name="engine"” on
page 37

"

“section name="atsSource"” on
page 38

“Specifying Data Conversions”
on page 181 of the Modulant
Balisarda Mapping Tool Guide

“section name="atsTarget"” on
page 39

“Specifying Data Conversions”
on page 181 of the Modulant
Balisarda Mapping Tool Guide

Modulant Curtana Developer’s Guide 3

1 Introduction

The Life Cycle of a Queued Job

The Lifecycle Manager creates a queue of jobs as a single-threaded process in a
single JVM.

Figure 2 shows the Lifecycle Manager queue and what happens when you add a
new transformation run job.

Figure 2: The Lifecycle Manager Queue

Job ID Configuration File Job Status /
1001 axml SUCCESS

1002 bxml SUCCESS

1003 cxml PROCESSING -~
1004 dxml QUEUED

1005 exml QUEUED

1006 f.xml QUEUED

AddJobto ,:"> Lifecycle Manager j/
Queue

fxm

Processing Current Joh peeeecemmmmmmc e

Figure 3 shows how the Lifecycle Manager identifies and processes the current
job.

4 Modulant Curtana Developer’s Guide

The Life Cycle of a Queued Job

Figure 3: Life Cycle of a Queued Job

Jobs Waiting In

Queue? Sleep for One Second

Read Job From Queue

Yy

Read run_config xml File and
Prepare Internal Tables

Yy

Load XMP Files for Source and
Target ATSs

Y

Load Source ATS Data into
Internal Database

A
Call Transformation Engine:
Data Converter Preprocess
Population Engine
Extraction Engine
Data Converter Postprocess

i

Extract Target ATS Data to
XML Format

Clean Up Internal Database

Modulant Curtana Developer’s Guide 5

1 Introduction

6 Modulant Curtana Developer’s Guide

Using the Lifecycle Manager
API

Using the Lifecycle Manager API, you can create a job queue from which you can
perform Modulant Curtana transformation runs independently of the Modulant
Curtana Analyst Tool. You specify the parameters of each transformation run in a
configuration file, which the Lifecycle Manager reads.

The Lifecycle Manager writes status and error messages to the standard
Modulant Curtana log file (curtana.log), which resides in the logs subdirectory of
your installation.

Unlike the Analyst Tool, which can use either Access or Oracle for its internal
database, the Lifecycle Manager API requires an Oracle database.

The following topics describe what you can do with the Lifecycle Manager API:
m Configuring the Modulant Curtana Transformation Engine

m Setting Up the Runtime Environment

m Invoking the Lifecycle Manager

m Adding a Job to the Queue

m Cetting the Status of a Job

m Removing a Job from the Queue

m Using the Lifecycle Manager from the Command Line

Note: Before you can use the Lifecycle Manager API, you must prepare the
internal database. To do this, you must run the Database Configuration script
supplied with the Modulant Curtana platform; for instructions, see the Installation

Guide. This script creates core tables that the Lifecycle Manager and the
Transformation Engine use.

Modulant Curtana Developer’s Guide 7

2 Using the Lifecycle Manager API

Configuring the Modulant Curtana Transformation Engine

The Lifecycle Manager API uses two databases: one to manage the job queue
(known as the control database), and one to store internal data for transformation
runs (known as the working database). In order to use the Lifecycle Manager, you
must specify the locations of both of these databases. These can point to the same
database, or different ones.

WARNING:

Do not add any tables of your own to the working database; the Lifecycle
Manager will remove them after each transformation run.

The Lifecycle Manager uses two files to specify database connection information.
These files reside in the conf subdirectory of your Modulant Curtana installation.
You specify the information about the working databases in these files, as follows:

conf\config.xml

This file contains a section with database information for the Lifecycle
Manager. You specify logical names for the internal databases. For example:

<section name="lifecycle">
<entry key="workDataSource">LMWork</entry>
<entry key="controlDataSource">LMControl</entry>
</section>

Both of these entries are required, even if they point to the same database.
confidatasources.xml

This file describes database connections that both the Analyst Tool and the
Lifecycle Manager use. You only need to edit this file yourself if you use the
Lifecycle Manager.

This file must have an entry corresponding to each data source you list in the
Lifecycle section of config.xml. For example:

<section name="LMWork"s>
<entry key="type">JDBC</entrys>
<entry key="driver"ssun.jdbc.odbc.JdbcOdbcDriver</entry>
<entry key="URL">jdbc:odbc:devz</entry>
<entry key="user"s>user7</entry>
<entry key="password"suser7</entry>
<entry key="dataSourceType">ORACLE</entry>
<entry key="dataSourceName">devz</entry>
</section>
<section name="LMControl">
<entry key="type">JDBC</entry>
<entry key="driver"s>sun.jdbc.odbc.JdbcOdbcDriver</entry>
<entry key="URL">jdbc:odbc:devz</entry>

8 Modulant Curtana Developer’s Guide

Setting Up the Runtime Environment

<entry key="user"suser7</entry>
<entry key="password"s>user7</entry>
</section>

Note that the section for the database used by the Transformation Engine has
two entries (in bold) that the entry for the control database does not require. If
you use the same data source for both purposes, you must include these
entries.

WARNING:

The Lifecycle Manager requires that you assign only CONNECT and RESOURCE
roles to Oracle database users. Do not set any session-idle timeouts for database
connections, and do not use Oracle's Multi-Threaded Server (MTS) for connection
pooling.

For more information about the system configuration file settings the Lifecycle
Manager expects, see Appendix B, “Configuring Database Connections.”

Setting Up the Runtime Environment

Before you can use the Lifecycle Manager API, your Java CLASSPATH must include
the following entries (in addition to entries referencing your custom code):

curtana.root\lib\classesl2.jar
curtana.root\lib\xalan.jar
curtana.root\lib\xerces.jar
curtana.root\lib\ecs.jar
curtana.root\lib\jdom. jar
curtana.root\lib\jbcl.jar
curtana.root\lib\log4j.jar
curtana.root\curtana.jar

Note: The file curtana.jar is in the root directory of your Modulant Curtana
installation, and the remaining files are in the lib subdirectory.

In addition, the Lifecycle Manager relies on a set of .dll files, which are installed in
the curtana.root directory. Therefore, the curtana.root directory must also be in
your PATH environment variable.

To set the PATH environment variable, use the following command:

set PATH=%PATH%; curtana.root

Modulant Curtana Developer’s Guide 9

2 Using the Lifecycle Manager API

Invoking the Lifecycle Manager

The Lifecycle Manager is a singleton class. Only one instance of it can be running
at a time in the current JVM. The Lifecycle Manager creates and maintains a job
queue in a single thread, processing one job at a time. Figure 2 on page 4 shows
how the Lifecycle Manager works with the job queue.

When it starts, the Lifecycle Manager returns a reference to itself, which you can
use to manage and monitor queued jobs. For more information, see
“LifecycleManager Class” on page 22.

Example 1 on page 11 shows how to invoke the Lifecycle Manager and add a job
to the queue. For more information about starting the Lifecycle Manager, see
“getInstance()” on page 24.

The Lifecycle Manager starts a worker thread to process transformation runs.
When you invoke the getinstance() method, the Lifecycle Manager attempts to
start this worker thread if it has not already started one.

The worker thread is responsible for executing any transformation runs (jobs)
waiting in the Lifecycle Manager’s queue. If the queue is empty when you add a
job, the worker thread begins executing the new job immediately. If there is
nothing in the queue, the worker thread sleeps for one second before repolling the
queue.

When you start the Lifecycle Manager, it determines whether a worker thread is
active in the current Java Virtual Machine (JVM) or in another JVM. It does this by
checking the control database defined in datasources.xml. If the Lifecycle
Manager is already running in another JVM (using the same database
connections), the worker thread will not start.

If the worker thread is started, it continues to run until you stop the current JVM.

Therefore, the examples in this chapter assume that only one JVM is running, and
that the Lifecycle Manager continues polling the queue after running each
example. This is because the Lifecycle Manager has started the worker thread in
non-daemon mode, which keeps it running until you stop the JVM.

10 Modulant Curtana Developer’s Guide

Adding a Job to the Queue

Adding a Job to the Queue

After the Lifecycle Manager starts, you can add transformation run jobs to its
queue.

To specify a job, you must have a run configuration file with the names and
locations of the source and target ATS files. For each ATS, the configuration file
must specify:

the name of the ATS

The Transformation Engine uses this name to identify the ATS in the internal
database tables.

the full path to the file containing the ATS data

the full path to a DTD that describes the ATS schema

the full path to the XMP file that contains mapping information for this ATS
the format of the ATS data; at this time, the only valid format is XML

For details about the run configuration file format, see Appendix A,
“run_config.xml Reference.”

Example 1 shows how to add a job to the Lifecycle Manager’s queue. For more
information, see “add]Job()” on page 23.

Example 1: Starting the Lifecycle Manager and Adding a Job

package abc.xyz;

import modulant.lifecycle.LifecycleManager;
import modulant.lifecycle.queue.QueueddobInfo;
import modulant.lifecycle.queue.QueueException;

public class LMExample {

public static void main(Stringl[] args)
throws Exception {

String configFileLocation = args[0];

QueuedJdobInfo info = null;
LifecycleManager 1Man = LifecycleManager.getInstance() ;

try {
System.out.println("..Invoking LifecycleManager");
info = 1Man.addJdob(configFileLocation) ;
System.out.println("..Add Job successful - Job Info:: ");

System.out.println(info.toString());

Modulant Curtana Developer’s Guide 11

2 Using the Lifecycle Manager API

catch (QueueException ge)
String msg = ge.getMessage() ;
System.out.println("..Add Job failed:: " + msg);

}
}

To run this example, enter the following command:

$> java "-Dcurtana.root=d:\modulant\curtana" abc.xyz.LMExample
c:\runs\run config.xml

This example produces the following output:

. .Invoking LifecycleManager

..Add Job successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocation>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTime>
<jobRunEndTime></jobRunEndTime>
<errorFileLocations</errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

If you specify an invalid run configuration file path, you get the following output:

$> java "-Dcurtana.root=d:\modulant\curtana" abc.xyz.LMExample
c:\runs\run_config bak.xml

. .Invoking LifecycleManager

..Add Job failed:: Queue Exception - file

c:\runs\run config bak.xml does not exist

When you send a request the Lifecycle Manager to add a job to its queue, you
specify the location of the configuration file that describes the transformation run
for that job. The Lifecycle Manager adds the job to the queue and returns a
QueuedJoblinfo object with information about that job and its status. For more
information, see “Queued]obInfo Interface” on page 26.

Getting the Status of a Job

After the Lifecycle Manager has added a job to the queue, you can request
information about the job, including the status of the job, the location of the
configuration file, and the time the transformation run started and finished.

You can request the status of a job in either of two ways:
m by the job ticket number (which you can get by calling QueuedJobinfo.getID())

® using the QueuedJoblinfo object you received when you added the job to the
queue

12 Modulant Curtana Developer’s Guide

Getting the Status of a Job

Table 2 on page 29 lists the possible status values for a transformation job.

Example 2 shows how to get information about a job in the queue. For more
information, see “getJobUpdate()” on page 24.

Example 2: Getting Status Information About a Queued Job

package abc.xyz;

import modulant.lifecycle.LifecycleManager;
import modulant.lifecycle.queue.QueueddJobInfo;
import modulant.lifecycle.queue.QueueException;

public class LMExample {

public static void main(Stringl[] args)
throws Exception {

String configFileLocation = args([0];

QueuedJobInfo info = null;
LifecycleManager 1Man = LifecycleManager.getInstance() ;

try {
System.out.println("..Invoking LifecycleManager") ;
info = 1Man.adddob(configFileLocation) ;
System.out.println("..Add Job successful -

Job Info:: ");
System.out.println(info.toString());

int id = info.getID();

QueueddobInfo info2 = 1Man.getJobUpdate(id) ;

System.out.println("\n..Getting Job update successful
- Job Info:: ");

System.out.println(info2.toString());

QueueddobInfo info3 = 1Man.getJobUpdate(info);
System.out.println("\n..Getting Job update successful -
Job Info:: ");
System.out.println(info3.toString());
}
catch (QueueException ge)
String msg = ge.getMessage() ;
System.out.println("..Job Manipulation failed:: "
+ msg);

Modulant Curtana Developer’s Guide 13

2 Using the Lifecycle Manager API

To run this example, use the following command:

$> java "-Dcurtana.root=d:\modulant\curtana" abc.xyz.LMExample
c:\runs\run config.xml

This command produces the following output:

. .Invoking LifecycleManager

. .Add Job successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTime>
<jobRunEndTime></jobRunEndTime >
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

. .Getting Job update successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocationx>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTime>
<jobRunEndTime></jobRunEndTime>
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

. .Getting Job update successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocationx>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTimes>
<jobRunEndTime></jobRunEndTime>
<errorFileLocation></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

14 Modulant Curtana Developer’s Guide

Removing a Job from the Queue

Removing a Job from the Queue

You can ask the Lifecycle Manager to remove a job from the queue at any time

until the job has started. Once a transformation run is in progress, it cannot be

removed. If you request that a running job be removed, the Lifecycle Manager

throws an exception.

You can specify a job to remove in either of two ways:

m by the job ticket number (which you can get by calling QueuedJobinfo.getID())

m using the QueuedJobinfo object you received when you added the job to the
queue

Example 3 shows how to remove a job from the Lifecycle Manager’s queue. For
more information, see “addJob()” on page 23.

Example 3: Removing a Transformation Job from the Queue
package abc.xyz;

import modulant.lifecycle.LifecycleManager;
import modulant.lifecycle.queue.QueueddobInfo;
import modulant.lifecycle.queue.QueueException;

public class LMExample {

public static void main(Stringl[] args)
throws Exception {

String configFileLocation = args[0];

QueuedJdJobInfo info = null;
LifecycleManager 1Man = LifecycleManager.getInstance() ;

try {
System.out.println("..Invoking LifecycleManager");
info = 1Man.addJob(configFileLocation) ;

System.out.println("..Add Job successful - Job Info:: ");
System.out.println(info.toString());

info = 1Man.getJobUpdate(info);

System.out.println("\n..Getting Job update successful -
Job Info:: ");

System.out.println(info.toString());

System.out.println("\n..Current Job status is:: "
info.getStatus());

1Man.removedob (info) ;

Modulant Curtana Developer’s Guide 15

2 Using the Lifecycle Manager API

System.out.println("\n..Job removed successfully");
}
catch (QueueException ge)
String msg = ge.getMessage() ;
System.out.println("..Job Manipulation failed:: "
+ msg) ;

}

To run this example, use the following command:

$> java "-Dcurtana.root=d:\modulant\curtana" abc.xyz.LMExample
c:\runs\run config.xml

This command produces the following output:

. .Invoking LifecycleManager

..Add Job successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTimes>
<jobRunEndTime></jobRunEndTime>
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

. .Getting Job update successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTime>
<jobRunEndTime></jobRunEndTime >
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

. .Current Job status is:: QUEUED

..Job removed successfully

Unless the Lifecycle Manager encounters a problem while removing the specified
job, you will receive no feedback to let you know that the job has been removed. If
the job is already running, the Lifecycle Manager throws a QueueException, and
the job continues until the transformation run is complete.

16 Modulant Curtana Developer’s Guide

Using the Lifecycle Manager from the Command Line

If there were no other jobs in the queue, the Lifecycle Manager begins executing
this one immediately, which means that you can’t remove it. For example:

. .Invoking LifecycleManager

..Add Job successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTimes>
<jobRunEndTime></jobRunEndTime>
<errorFilelLocation></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

. .Getting Job update successful - Job Info::

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>PROCESSING</statuss>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTimes>
<jobRunEndTime></jobRunEndTime >
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

..Current Job status is:: PROCESSING
..Job manipulation failed:: Queue Exception - Job 10985 is
currently processing, and cannot be removed

Using the Lifecycle Manager from the Command Line

Instead of building support for the Lifecycle Manager’s queuing mechanism into
a larger application, you can interact with the Lifecycle Manager directly, using a
command-line tool known as the LifecycleQueue. This tool is available in the
modulant package.

The LifecycleQueue allows end-users, such as integration architects, to add
transformation jobs to the queue, obtain the current status of a queued job, or
remove a job from the queue.

This section addresses the following topics:

®m Running the Lifecycle Queue

m Adding a Transformation Job to the Queue
m Cetting the Status of a Queued Job

m Removing a Transformation Job from the Queue

Modulant Curtana Developer’s Guide 17

2 Using the Lifecycle Manager API

Running the Lifecycle Queue

Use the following command to run the LifecycleQueue:

$> java "-Dcurtana.root=d:\modulant\curtana"
modulant .LifecycleQueue <command> <options>

If you run this command without specifying a command or any options, you get a
help message describing how to use the command, shown in Example 4.

Example 4: LifecycleQueue Usage Message
R RS SRS SR SRR SRS S SRS RS R S SRS SRR SRR E RS SRR R R RS R R R R R R R EEEEEEEEEES

Welcome to Curtana!

The correct usage of this utility is one of the following:
(1) ADD Default - java "-Dcurtana.root=<curtana.roots>"
modulant .LifecycleQueue ADD

(2) ADD Explicit - java "-Dcurtana.root=<curtana.root>"
modulant .LifecycleQueue ADD <config files
(3) STATUS Explicit - java "-Dcurtana.root=<curtana.roots>"

modulant.LifecycleQueue STATUS <job_ids>
(4) REMOVE Explicit - java "-Dcurtana.root=<curtana.roots>"
modulant .LifecycleQueue REMOVE <job ids>

where:
ADD - Adds a run configuration file to the work queue to be
processed.

Omitting <config file> assumes the run configuration to be:
<curtana.root>\conf\run config.xml

STATUS - Retrieves job status from the work queue based on a Job
ID.

The Job ID must be specified, or no action will be taken.
The Job ID must be an integer.

REMOVE - Removes a job from the work queue based on a Job ID.
The Job ID must be specified, or no action will be taken.
The Job ID must be an integer.

For additional information on the command line API, please refer to
the user manual.
R EEESESESERESEEESEES

Adding a Transformation Job to the Queue

To add a job to the queue, you specify the location of a run configuration file that
contains the parameters of the transformation job. If you do not specify a
configuration file name, the LifecycleQueue looks for a run configuration file in the
default location curtana.root\confirun_config.xml.

18 Modulant Curtana Developer’s Guide

Using the Lifecycle Manager from the Command Line

When you add a job to the queue, the LifecycleQueue prints a DOM representation
of the of the queued job (a QueuedJobinfo object) to the console, much like the
examples in the previous sections. For more information about the returned job
object, see “Queued]obInfo Interface” on page 26.

Example 5 shows the syntax you use to add a job to the queue, followed by the
XML representation of the queued job.

Example 5: Adding a Job from the Command Line

$> java "-Dcurtana.root=d:\modulant\curtana"
modulant .LifecycleQueue ADD c:\runs\run_config.xml

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocations>
<status>QUEUED</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime></jobRunStartTimes>
<jobRunEndTime></jobRunEndTime>
<errorFileLocations></errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

Getting the Status of a Queued Job

To request the status of a queued job, you specify the job ID. The job ID is the first
element (jobID) of the XML representation of the job that the LifecycleQueue
returned when you added the job.

Example 6 shows the syntax you use to get the status of a queued job. The
LifecycleQueue returns another copy of the XML DOM object containing the job’s
status.

Example 6: Getting the Status of a Queued Job

$> java "-Dcurtana.root=d:\modulant\curtana"
modulant .LifecycleQueue STATUS 10985

<?xml version="1.0" encoding="UTF-8"?>

<JobInfo>
<jobID>10985</jobID>
<configFileLocation>C:\runs\run config.xml</configFileLocation>
<status>PROCESSING</status>
<jobSubmitTime>2001.07.31.18:33:05</jobSubmitTime>
<jobRunStartTime>2001.07.31.18:35:05</jobRunStartTime>
<jobRunEndTime></jobRunEndTime>
<errorFileLocations</errorFileLocation>
<statusMessage></statusMessage>

</JobInfo>

Modulant Curtana Developer’s Guide 19

2 Using the Lifecycle Manager API

Removing a Transformation Job from the Queue

To remove a job from the queue, you specify the job ID. The job ID is the first
element (jobID) of the XML representation of the job that the LifecycleQueue
returned when you added the job.

Example 7 shows the syntax you use to get the status of a queued job. After
removing the job, the LifecycleQueue prints a confirmation message.

Note: If the transformation job has already started, you cannot remove it from
the queue.

Example 7: Removing a Job from the Queue

$> java "-Dcurtana.root=d:\modulant\curtana"
modulant .LifecycleQueue REMOVE 10985

QueuedJobInfo 10985 removed successfully.

20 Modulant Curtana Developer’s Guide

Lifecycle Manager API
Reference

The Lifecycle Manager API lets you perform transformation runs separately from
the Modulant Curtana Analyst Tool. Using this API, you can define jobs that
execute transformation runs and queue them to run independently. You can use
this API in standalone Java programs, or inside of existing E]Bs (Enterprise
JavaBeans) or servlets in a single JVM.

This API resides in the package modulant.lifecycle, which contains the singleton
class LifecycleManager and the interface QueuedJobinfo:

m The LifecycleManager class creates a job queue in a single thread, and
provides methods that let you control and monitor the jobs in the queue. Each
job is a single transformation run. For details, see “LifecycleManager Class”
on page 22.

m The QueuedJoblinfo interface describes an individual jobs in the job queue. It
contains methods that provide status information about the job. For details,
see “Queued]oblInfo Interface” on page 26.

In addition, you can use the Lifecycle Manager functions directly from the
command line, using the LifecycleQueue class. For details, see “LifecycleQueue
Class” on page 31.

The Lifecycle Manager API uses a configuration file for each job that contains
information about the transformation run, including the names and locations of
the source and target ATSs and the associated XMP files. For information, see
Appendix A, “run_config.xml Reference.”

Figure 3 on page 5 shows the flow of the job queue and the life cycle of a job as it
is being processed.

Modulant Curtana Developer’s Guide 21

3 Lifecycle Manager APl Reference

LifecycleManager Class

Singleton class that manages a queue for the invocation and running of one or
more transformation runs.

Syntax

package modulant.lifecycle;

import modulant.lifecycle.queue.QueueException;
import modulant.lifecycle.queue.QueueddobInfo;

public class LifecycleManager
extends java.lang.Object

{

public QueuedJobInfo addJob(java.lang.String configFilePath)
public static final LifecycleManager getInstance ()

public QueuedJobInfo getJobUpdate (int jobID)

public QueuedJobInfo getJobUpdate (QueueddJobInfo info)

public void removeJob (int jobID)

public void removedJob (QueuedJobInfo info)

Description

The LifecycleManager class manages a queue of one or more jobs that define
transformation runs. Once you add a job to the queue, the LifecycleManager
handles the entire process, as shown in Figure 3 on page 5.

The getinstance() method starts the LifecycleManager; it acts as a singleton within
the current JVM. The LifecycleManager is responsible for queueing jobs (in the
form of a run configuration file) in the work queue, reporting the status of a
particular job when polled, and removing a job when requested.

The LifecycleManager spawns a worker thread, which queries the work queue and
executes queued jobs (that is, performs the defined transformation run), one after
the other, in the order they appear in the queue.

22 Modulant Curtana Developer’s Guide

addJob()

LifecycleManager Class

public QueuedJobInfo addJob (java.lang.String configFilePath)
throws QueueException

Description

Adds a job to the work queue, using the information in the run configuration file.
Parameter

configFilePath The path to the location of the run_config.xml file, including
the file name, that defines the parameters of the
transformation run associated with this job.

Return Value

Returns a QueuedJoblinfo object with information about the job’s position in the
queue and its status.

Exception

Throws QueueException if an exception is encountered while adding the job to the
queue; for example, if the specified configuration file does not exist.

Example

Example 1 on page 11 shows how to use this method to add a job to the Lifecycle
Manager’s queue.

See Also

m “removeJob()” on page 25
m “Queued]JobInfo Interface” on page 26

®m “run_config.xml Reference” on page 35

Modulant Curtana Developer’s Guide 23

3 Lifecycle Manager APl Reference

getinstance()

public static final LifecycleManager getInstance ()

Description

Returns a reference to a singleton LifecycleManager object. If a LifecycleManager
object already exists in the JVM memory space, this method returns a reference to
that object; otherwise, it creates a new one and returns a reference to the new
object.

Return Value

Returns a singleton instance of a LifecycleManager object.

Example

Example 1 on page 11 shows how to use this method to start the Lifecycle
Manager.

getlobUpdate()

public QueuedJobInfo getJobUpdate (int jobID)
public QueuedJobInfo getJobUpdate (QueuedJobInfo info)

Description

Queries the work queue to determine the current status QUEUED, SUCCESS,
PROCESSING, etc.) of a queued job. This method has two versions, both of which
return status information about a queued job. The difference is how you specify
the job:

® You can request status information about a job using its job ticket number. To
determine the ticket number, call QueuedJobinfo.getID().

® You can request status information about a job using the QueuedJobinfo object
you received when you added the job to the queue.

Parameters

Based on which version of this method you use, specify one of the following
parameters:

jobID The ticket number of a job whose status you want.

info A job object that describes the job whose status you want.

24 Modulant Curtana Developer’s Guide

removelob()

LifecycleManager Class

Return Value

Returns a QueuedJoblinfo object with updated status information about the job.

Exception

Both versions of this method throw QueueException if an exception is
encountered while checking the job status; for example, if the job cannot be found.
Example

Example 2 on page 13 shows both ways of using this method: by specifying a job
ID, and by specifying a QueuedJoblinfo object.

See Also

m “QueuedJobInfo Interface” on page 26
m “getlD()” on page 27

public void removeJdob (int jobID)
throws QueueException

public void removedob (QueuedJobInfo info)
throws QueueException

Description

This method has two versions, both of which remove a job from the work queue.
The difference is how you specify the job to remove:

® You can remove a job using its job ticket number. To determine the ticket
number, call QueuedJobinfo.getID().

® You can remove a job using the QueuedJobinfo object you received when you
added the job to the queue.

Parameters

Based on which version of this method you use, specify one of the following
parameters:

jobID The ticket number of a job to remove from the queue.

info A job object that describes the job to remove from the queue.

Modulant Curtana Developer’s Guide 25

3 Lifecycle Manager APl Reference

Exception

Both versions of this method throw QueueException if an exception is
encountered while removing the specified job from the queue; for example, if the
requested job is still being executed.

Example

Example 3 on page 15 shows how to use this method to remove a job from the
Lifecycle Manager’s queue.

See Also
m “addJob()” on page 23

m “QueuedJobInfo Interface” on page 26

m “getlD()” on page 27

QueuedJobinfo Interface

Interface that encapsulates information about a queued job that describes a
Modulant Curtana transformation run.

Syntax

package modulant.lifecycle.queue;

public interface QueuedJobInfo
extends modulant.lifecycle.queue.QueuedJobStatus
{
public java.lang.String getConfigFilePath ()
public java.lang.String getErrorFilePath()
public int getID()
public java.util.Date getRunEndTime ()
public java.util.Date getRunStartTime ()
public java.lang.String getStatus/()
public int getStatusCode ()
public java.lang.String getStatusMessage ()
public java.util.Date getSubmitTime ()

Description

The QueuedJobinfo interface provides methods that return information about the
status of a queued job and the configuration file that defines the associated
transformation run. As a job progresses through the transformation run, its status
can take the values listed in Table 2 on page 29.

26 Modulant Curtana Developer’s Guide

QueuedJoblnfo Interface

getConfigFilePath()

public java.lang.String getConfigFilePath/()

Description

Returns the location of the XML configuration file that defines the transformation
run associated with the current job.

Return Value

A string that contains the full path name to the configuration file that defines this
transformation run.

See Also

m “run_config.xml Reference” on page 35

getErrorFilePath()

getID()

public java.lang.String getErrorFilePath()

Description

Returns the location of a file containing error messages if an error occurs during
the transformation run.

Return Value

Returns a string that contains the full path name to the error log file. Returns an
empty string if no errors were encountered.

public int getID()

Description

Returns a ticket number that indicates the position of the current job in the job
queue.

Return Value

Returns an integer value that represents the job ID number.

Modulant Curtana Developer’s Guide 27

3 Lifecycle Manager APl Reference

Example

Example 2 on page 13 shows how to use this method to get the job ID of a queued
transformation run job.

getRunEndTime()

public java.util.Date getRunEndTime ()

Description

Returns the time that a successful transformation run ended. While a job is still in
progress, this method returns a null value.

Return Value

Returns a date value containing the time the transformation run finished, or a null
value if the run has not ended.

See Also

m “getRunStartTime()” on page 28
m “getSubmitTime()” on page 31

getRunStartTime()

public java.util.Date getRunStartTime (

Description

Returns the time that the transformation run associated with a job started. While
the job is in the queue waiting to start, this method returns a null value.

Return Value

Returns a date value containing the time the transformation run started, or a null
value if the job has not yet started.

See Also

m “getRunEndTime()” on page 28
m “getSubmitTime()” on page 31

28 Modulant Curtana Developer’s Guide

getStatus()

QueuedJoblnfo Interface

public java.lang.String getStatus()

Description

Returns the status of the current job, indicating whether any exceptions have
occurred, and where the job is in the process of the transformation run.

Return Value

Returns a status value, using one of the values listed in Table 2.

Table 2: Queued Job Status Values

Status Code Indicates

QUEUED 0 job has been queued, but has not been
executed yet

PROCESSING 1 job is currently being executed

SUCCESS 2 job completed successfully

NO_JOB 12 no job found for the given job ID

EXCEPTION_ATS_LOAD 4 job failed while loading data from a
source ATS

EXCEPTION_XMP_LOAD 6 job failed while loading XMP mappings

EXCEPTION_PRE_PROCESS 7 job failed during the preprocessing phase
of the Modulant Curtana Data Converter

EXCEPTION_POPULATION 9 job failed while populating data to the
Abstract Conceptual Model

EXCEPTION_EXTRACTION 10 job failed while extracting data from the
Abstract Conceptual Model

EXCEPTION_POST_PROCESS 8 job failed during the postprocessing
phase of the Modulant Curtana Data
Converter

EXCEPTION_ATS_EXTRACT 5 job failed while extracting data to a target
ATS

EXCEPTION_SCHEMA_REBUILD 11 job failed during database cleanup

EXCEPTION_UNKNOWN 3 some unknown exception has occurred

Modulant Curtana Developer’s Guide 29

3 Lifecycle Manager APl Reference

Example

Example 3 on page 15 shows how to use this method to get the status of a queued
transformation run job.

See Also

m “getStatusCode()” on page 30
m “getStatusMessage()” on page 30

getStatusCode()

public int getStatusCode ()

Description

Returns the a numeric value showing the status of the current job, including
whether any exceptions have occurred, and where the job is in the process of the
transformation run.

Return Value

Returns an integer value representing the status code, using one of the values
listed in Table 2 on page 29.

See Also

m “getStatus()” on page 29
m “getStatusMessage()” on page 30

getStatusMessage()

public java.lang.String getStatusMessage ()

Description

Returns any messages associated the status of the current job, including messages
generated by exceptions that have occurred.

Return Value

Returns a text string that contains status messages associated with the current
transformation run.

30 Modulant Curtana Developer’s Guide

LifecycleQueue Class

See Also
m “getStatus()” on page 29

m “getStatusCode()” on page 30

getSubmitTime()

public java.util.Date getSubmitTime ()

Returns the time that the transformation run associated with a job was added to
the job queue.

Return Value

Returns a date value containing the time the job was queued.

See Also

m “getRunStartTime()” on page 28
m “getRunEndTime()” on page 28

LifecycleQueue Class

Class that gives you direct access to the Lifecycle Manager’s queue from the
command line.

Syntax

package modulant;

import modulant.lifecycle.LifecycleManager;
public class LifecycleQueue

extends java.lang.Object

{
}

public static void main(String[] args)

Command-Line Syntax
java "-Dcurtana.root=curtana.root" modulant.LifecycleQueue ADD
java "-Dcurtana.root=curtana.root" modulant.LifecycleQueue ADD

config file

java "-Dcurtana.root=curtana.root" modulant.LifecycleQueue REMOVE
job id

java "-Dcurtana.root=curtana.root" modulant.LifecycleQueue STATUS
job id

Modulant Curtana Developer’s Guide 31

3 Lifecycle Manager APl Reference

Description

If you do not want to embed the functionality of the Lifecycle Manager into an
application, you can use the LifecycleQueue class to run transformation jobs
directly from the command line.

You can use the LifecycleQueue class to manage transformation runs in the
Lifecycle Manager’s queue. Using the options available for this class, you can:

®m add jobs to the queue
m view the status of a queued job

m remove queued jobs that have not been started

To use the LifecycleQueue, enter the following command:

$> java "-Dcurtana.root=d:\modulant\curtana"
modulant .LifecycleQueue <command> <options>

“Options” on page 32 lists the available command-line options. If you run this
command without specifying any options, you get a help message describing the
syntax of the command. Example 4 on page 18 shows the LifecycleQueue’s usage
message.

Options

The LifecycleQueue command recognizes the following options:

ADD config_file Adds a job to the queue, using the information in the
specified run configuration file. For information about the
syntax of run configuration files, see Appendix A,
“run_config.xml Reference.”

The LifecycleQueue returns an XML DOM object with a
description of the queued job.

ADD If you use the ADD option without specifying a
configuration file name, the LifecycleQueue looks for a run
configuration file in the default location
curtana.root\conf\run_config.xml.

STATUS job_id Returns the status of a queued job as an XML DOM object.
To specify the job, you provide the job ID from the DOM
object you got from the LifecycleQueue when you added
the job.

For more information about this job object, see
“Queued]obInfo Interface” on page 26.

REMOVE job_id Removes a job from the queue. To specify the job, you
provide the job ID from the DOM object you got from the
LifecycleQueue when you added the job.

32 Modulant Curtana Developer’s Guide

LifecycleQueue Class

Examples
m Example 5 on page 19 shows the syntax for adding a job to the queue, and the
command-line output that results.

m Example 6 on page 19 shows the syntax for requesting a job’s status, and the
status information that the LifecycleQueue returns.

m Example 7 on page 20 shows the syntax for removing a job from the queue,
followed by the LifecycleQueue’s confirmation.

Modulant Curtana Developer’s Guide 33

3 Lifecycle Manager APl Reference

34 Modulant Curtana Developer’s Guide

run_config.xml|l Reference

Therun_config.xml file defines the parameters of a transformation run. Youcreate

this file yourself using an XML editor, such as XMLSpy, or any text editor.

Example 8 shows a sample run configuration file. This appendix explains each of

the sections in the sample file.

Example 8: Configuration File Syntax

<?xml version = "1.0"?>
<!-- sample run config file -->
<configurations>

<section name="engine"s>
<entry key="integrationSchemaFile">
e:\runs\acme\schema\acme.exp
</entrys>
<entry key="directTranslation">false</entry>
<entry key="forceUnique"s>true</entry>
<entry key="enforceATSKeys">true</entrys>
</section>
<section name="atsSource"s>
<section name="atsSourcel">
<entry key="name"sacme 1 in</entry>
<entry key="filePath"s>
e:\runs\acme\ats\acme 1 in.xml
</entry>
<entry key="dtdPath"s>
e:\runs\acme\ats\acme 1 in.dtd
</entry>
<entry key="xmpPath">
e:\runs\acme\xmp\acmeXMP 1.xml
</entry>
<entry key="atsSchemaDefinition">
e:\runs\acme\xmp\acmeXMP_ schema 1.xml
</entry>
<entry key="format"sxml</entry>
<entry key="createKeys">false</entry>
</section>

Modulant Curtana Developer’s Guide

35

A run_config.xml Reference

<section name="atsSource2">
<entry key="name"sacme 2 in</entry>
<entry key="filePath"s>
e:\runs\acme\ats\acme 2 in.xml
</entry>
<entry key="dtdPath">
e:\runs\acme\ats\acme 2 in.dtd
</entry>
<entry key="xmpPath">
e:\runs\acme\xmp\acmeXMP 2.xml
</entry>
<entry key="atsSchemaDefinition">
e:\runs\acme\xmp\acmeXMP_schema_ 2.dtd
</entry>
<entry key="format"s>xml</entry>
<entry key="createKeys">false</entry>
</section>
</section>
<section name="atsTarget">
<section name="atsTargetl"s>
<entry key="name'"s>acme_ out</entrys>
<entry key="filePath">
e:\runs\acme\ats\acme_out.xml
</entry>
<entry key="dtdPath"s>
e:\runs\acme\ats\acme out.dtd
</entry>
<entry key="xmpPath"s>
e:\runs\acme\xmp\acmeXMP_out .xml
</entry>
<entry key="atsSchemaDefinition"s>
e:\runs\acme\xmp\acmeXMP_schema_ out.dtd
</entry>
<entry key="format"s>xml</entrys>
</section>
</section>
</configuration>

Description

The structure of the configuration file is not complex. The file consists a top-level
configuration element with nested section elements, each of which has a set of
entry elements. You specify each section using a name attribute.

For each section, the Lifecycle Manager expects a specific set of entry elements,
which you specify using key attributes.

36 Modulant Curtana Developer’s Guide

section name="engine

Each section of the configuration file triggers a stage in the transformation run.
The expected sections are:

m section name="engine"

This section defines overall parameters that the Lifecycle Manager uses to
control the transformation run, including the location of the Abstract
Conceptual Model schema file.

B section name="atsSource"

This section defines each of the source ATSs for the transformation run,
including the location of the ATS data file, the DTD that defines the ATS
schema, and the XMP file that contains the mapping specification for this
ATS. You specify each source ATS in a nested section element.

m section name="atsTarget"

This section defines each target ATS for the transformation run, including the
location of the output file into which to extract the ATS data, the DTD that
defines the ATS schema, and the XMP file that contains the mapping
specification for this ATS. You specify the target ATS in a nested section
element.

section name="engine"

The Engine section defines the configuration parameters required by the Lifecycle
Manager. The entries in this section parallel the configuration information you
specify in the Configuration dialog box of the Modulant Curtana Analyst Tool.

Table 3 lists the entry elements and the key attributes included in this section.

Table 3: The Engine Section of the Configuration File

key Attribute Description

entry key="integrationSchemaFile" The full path to the location of the Abstract
Conceptual Model schema file. The
Transformation Engine expects this file to be
in EXPRESS format.

This entry is optional; if you leave it out, the
Lifecycle Manager uses the schema file
listed in the system configuration file
conf\config.xml.

Modulant Curtana Developer’s Guide 37

A run_config.xml Reference

Table 3: The Engine Section of the Configuration File (Continued)

key Attribute Description

entry key="directTranslation" Determines whether to perform a direct
translation on the source ATS data (in which
the structure of the ATS schema is
considered as the integration schema),
bypassing the stage of populating the
Abstract Conceptual Model.

Specify true or false. The default is false.

entry key="forceUnique" If set to true, the Transformation Engine
enforces the uniqueness rules (that is, the
key attribute constraints) defined in the
Abstract Conceptual Model while
populating source ATS data to the Abstract
Conceptual Model tables in the internal
database.

Specify true or false. The default is true.

key="enforceATSKeys" If set to true, the Transformation Engine
enforces primary keys to avoid duplicate
rows when extracting target ATS data from
the Abstract Conceptual Model.

Specify true or false. The default is true.

section name="atsSource"

The ATS Source section defines parameters for the Population Engine. Define a
separate section subelement within this section for each source ATS that is part of
the transformation run. Make sure the names of the subsections are unique.

If any of your source ATSs require data conversion before running the Population
Engine, ensure that the XMP file you specify in this section contains the necessary
dataConverter elements in a PREPROCESSOR list. For more information, see
Chapter 9, “Using the Modulant Curtana Data Converter,” in the Modulant
Balisarda Mapping Tool Guide.

38 Modulant Curtana Developer’s Guide

section name="atsTarget"

Table 4 lists the entry elements and the key attributes included in this section.

Table 4: The ATS Source Section of the Configuration File

key Attribute Description

entry key="name" The name of the ATS. This is the same name
you would enter in the ATS Registry of the
Modulant Curtana Analyst Tool.

entry key="filePath" The full path to the file containing the ATS
data for this source ATS.
entry key="dtdPath" The full path to the DTD that describes the

ATS schema for this source ATS. Use
FirstSTEP EXML to generate this DTD.

entry key="xmpPath" The full path to the XMP file containing the
mapping specification for this source ATS.
Use the Mapping Tool to export the
mapping information to an XMP file.

entry key="format" The format of the ATS data for this source
ATS. The default value is xml.

Note: For this version of the Modulant
Curtana platform, the only valid value for
this attribute is xml.

entry key="createKeys" If set to true, creates primary keys as
specified by the data in the XML file.

Specify true or false. The default is false.

section name="atsTarget"

The ATS Target section defines parameters for the Extraction Engine. Define a
section subelement within this section for the target ATS for the transformation
run.

If your target ATS requires data conversion after running the Extraction Engine,
ensure that the XMP file you specify in this section contains the necessary
dataConverter elements in a POSTPROCESSOR list. For more information, see
Chapter 9, “Using the Modulant Curtana Data Converter,” in the Modulant
Balisarda Mapping Tool Guide.

Modulant Curtana Developer’s Guide 39

A run_config.xml Reference

Table 5 lists the entry elements and the key attributes included in this section.

Table 5: The ATS Target Section of the Configuration File

key Attribute Description

entry key="name" The name of the ATS. This is the same name
you would enter in the ATS Registry of the
Modulant Curtana Analyst Tool.

entry key="filePath" The full path to the file containing the ATS
data for this target ATS.
entry key="dtdPath" The full path to the DTD that describes the

ATS schema for this target ATS. Use
FirstSTEP EXML to generate this DTD.

entry key="xmpPath" The full path to the XMP file containing the
mapping specification for this target ATS.
Use the Mapping Tool to export the
mapping information to an XMP file.

entry key="atsSchemabDefinition"

entry key="format" The format of the ATS data for this source
ATS. The default value is xml.

Note: For this version of the Modulant
Curtana platform, the only valid value for
this attribute is xml.

40 Modulant Curtana Developer’s Guide

Configuring Database

Connections

The Modulant Curtana Interoperability Platform uses two files to specify
database connection information: config.xml and datasources.xml. These files
reside in the conf subdirectory of your Modulant Curtana installation.

config.xml contains general system information for all of the Modulant
Curtana platform. It contains a section specific to the Lifecycle Manager that
lists names of two data sources: one for internal processing by the Modulant
Curtana Transformation Engine, and one for handling the job queue. These
data sources can point to the same database, or to different ones.

For more information, see “Editing config.xml” on page 43.

datasources.xml defines the connection parameters for data sources that the
Modulant Curtana platform uses. The Lifecycle Manager expects an entry in
this file for each name you list in the lifecycle section of config.xml.

For more information, see “Editing datasources.xml” on page 43.

The Lifecycle Manager API uses two databases: one to manage the job queue
(known as the control database), and one to store internal data for transformation
runs (known as the working database).

The control database has a static structure. The Lifecycle Manager does not
create or destroy any tables in this database as it runs. The control database
maintains a relatively small tablespace. Using a separate database for the job
queue provides a logical separation from the dynamic data created during
transformation runs.

The working database is volatile. This database can potentially require a
significant amount of tablespace. During a transformation run, the
Transformation Engine creates a large number of temporary tables to support
population and extraction of ATS data. When a transformation run ends, the
Lifecycle Manager removes any non-core Modulant Curtana tables from the
working database.

Modulant Curtana Developer’s Guide 41

B Configuring Database Connections

WARNING:

Do not add any tables of your own to the working database; the Lifecycle
Manager will remove them after each transformation run.

If you use the Lifecycle Manager API, you must edit both of the configuration files
to specify information about the Lifecycle Manager’s databases. This appendix
shows examples of the necessary entries in each of these files, and explains each
of the sections.

WARNING:

The Lifecycle Manager requires that you assign only CONNECT and RESOURCE
roles to Oracle database users. Do not set any session idle timeouts for database
connections, and do not use Oracle's Multi-Threaded Server (MTS) for connection
pooling.

Example 9 shows sample database configuration entries. The appendix explains
each of the sections in the sample files.

Example 9: Database Connection File Syntax
® In conf\config.xml:

<section name="lifecycle">
<entry key="workDataSource">LMWork</entry>
<entry key="controlDataSource">LMControl</entry>
</section>

® In conf\datasources.xml:

<section name="LMWork"s>
<entry key="type">JDBC</entry>
<entry key="driver"ssun.jdbc.odbc.JdbcOdbcDriver</entry>
<entry key="URL">jdbc:odbc:devz</entry>
<entry key="user"suser7</entry>
<entry key="password"suser7</entry>
<entry key="dataSourceType">O0RACLE</entry>
<entry key="dataSourceName">devz</entry>
</section>
<section name="LMControl">
<entry key="type">JDBC</entry>
<entry key="driver"s>sun.jdbc.odbc.JdbcOdbcDriver</entry>
<entry key="URL">jdbc:odbc:devz</entry>
<entry key="user"suser7</entry>
<entry key="password"s>user7</entry>
</section>

42 Modulant Curtana Developer’s Guide

Editing config.xml

Description

The master configuration file, config.xml, contains settings for various

components of the Modulant Curtana platform. If you use the Lifecycle Manager,
you only need to be concerned with the lifecycle section of this file. In this section,
you specify logical names of the two data sources that the Lifecycle Manager uses.

The database connection configuration file, datasources.xml, contains a section for
each data source used by any of the components of the Modulant Curtana
platform. If you use separate data sources for the Transformation Engine’s
internal database and for the Lifecycle Manager’s queue handler database, you
need two entries. If you use the same data source for both, you only need one
entry.

Editing config.xml

If you use the Lifecycle Manager, you must specify the logical name of two data
sources, one for the Transformation Engine to use for internal processing and one
where the Lifecycle Manager processes jobs in the queue.

To specify these names, go to the lifecycle section of config.xml, and modify the
entries as described in Table 6.

Table 6: The Lifecycle Manager Section of config.xml

key Attribute Description

entry key="workDataSource" A logical name that represents the database
used to load source ATS data, populate the
Abstract Conceptual Model, and extract
target ATS data during a transformation
run.

entry key="controlDataSource" A logical name that represents the database
used by the Lifecycle Manager to process
the queue of transformation run jobs.

Editing datasources.xml

After you specify logical names for the work data source and the control data
source in config.xml, you must add connection parameters for the associated
databases in datasources.xml. The Lifecycle Manager expects a separate entry for
each logical data source name you specified in config.xml.

Modulant Curtana Developer’s Guide 43

B Configuring Database Connections

You can either edit datasources.xml in any text editor to create these entries, or
you can use the Modulant Curtana Analyst Tool to define a database connection.
Using the Analyst Tool lets you automatically encrypt the database password. If
you edit the file yourself, the passwords remain in plain text. For more
information, see the section on defining database connections in the Modulant
Curtana Analyst Tool Guide.

Specifying the Work Data Source
Table 7 lists the entry elements and the key attributes included in this section.

Table 7: The Work Data Source Section of datasources.xml

key Attribute Description

entry key="type" The type of database. The default value is
JDBC; do not change this.
entry key="driver" The driver used by your database. The

default is sun.jdbc.odbc.JdbcOdbcDriver,
which is provided with the Modulant
Curtana platform.

entry key="URL" A pointer to your data source. The default is
jdbc:odbc:dataSourceName.

entry key="user" The user name for logging on to the
specified database.

entry key="password" The password for logging on to the
specified database.

Using the Analyst Tool to define a database
connection automatically encrypts the
database password. If you edit the entry
yourself, the password remains in plain text.

entry key="dataSourceType" The type database, either ORACLE or ACCESS.

This entry is required by the working
database, but not by the control database.

entry key="dataSourceName" The name of your data source. This value
must match the dataSourceName portion of
the value you specify for the URL key.

This entry is required by the working
database, but not by the control database.

44 Modulant Curtana Developer’s Guide

Editing datasources.xml

Specifying the Control Data Source

If your implementation of the Lifecycle Manager uses a different database for
handling the operation of the job queue than for performing transformation runs,
you must provide a separate entry for that database in datasources.xml.

This entry has the same form as the entry for the work data source, but does not
require either the entries dataSourceType or dataSourceName.

Modulant Curtana Developer’s Guide 45

B Configuring Database Connections

46 Modulant Curtana Developer’s Guide

Index

A
adding ajob 11
from the command line 18
addJob() 23
example 11
atsSource section of run_config.xml 3
attributes 38
atsTarget section of run_config.xml 3
attributes 39

C

CLASSPATH 9
config.xml file 41
Lifecycle Manager entries 8
configuration files 8
config.xml §
datasources.xml 8
for transformation run 3
run_config.xml 35
configurationList element 3
control database 41
configuring 8
controlDataSource entry 43
core tables
creation 7
deletion 41
createKeys entry 39

D

Data Converter
postprocessing 2
preprocessing 2

data transformation process 2

database connections 8

dataSourceName entry 44

datasources.xml file 8, 41
control database entry 8
work database entry 8

dataSourceType entry 44

directTranslation entry 38

driver entry 44

dtdPath entry
in atsSource section 39
in atsTarget section 40

E

encrypting passwords 44

enforceATSKeys entry 38

engine section of run_config.xml 3
attributes 37

F

filePath entry
in atsSource section 39
in atsTarget section 40
forceUnique entry 38
format entry
in atsSource section 39
in atsTarget section 40

G

getConfigFilePath() 27
getErrorFilePath() 27
getID() 27
example 13
getinstance() 24
example 11
getlobUpdate() 24
example 13
getRunEndTime() 28
getRunStartTime() 28
getStatus() 29
example 15
getStatusCode() 30
getStatusMessage() 30
getSubmitTime() 31
getting job status 12
from the command line 19

integrationSchemaFile entry 37

Modulant Curtana Developer’s Guide 47

Index

internal database, for Transformation Engine 8

J
job queue 1
adding a job 11
database for 8
lifecycle of ajob 4
removing ajob 15
starting from the command line 18
L
Lifecycle Manager

database configuration 8
invoking 10
Lifecycle Manager API 1
and Modulant Curtana Analyst Tool 1
configuration file 21
lifecycle of queued job 4
LifecycleManager class 21
addJob() 23
getinstance() 24
getlobUpdate() 24
overview 22
removelob() 25
LifecycleQueue class 31
introduced 21
using 17

M

modulant.lifecycle package 21

N

name entry
in atsSource section 39
in atsTarget section 40

P

package modulant.lifecycle 21
password entry 44

PATH environment variable 9
POSTPROCESSOR conversion list 3
PREPROCESSOR conversion list 3

48 Modulant Curtana Developer’s Guide

Q

queue, see job queue 8
queued job
lifecycle 4
status 12
status values 29
queued jobs
removing 15
QueuedJoblinfo interface 21
example 12
getConfigFilePath() 27
getErrorFilePath() 27
getID() 27
getRunEndTime() 28
getRunStartTime() 28
getStatus() 29
getStatusCode() 30
getStatusMessage() 30
getSubmitTime() 31
syntax 26
QueueException
from addJob() 23
from getJobUpdate() 25
from removelob() 26

R

removelob() 25
example 15
removing ajob 15
from the command line 20
removing jobs
job already running 16
run configuration file 3
sections 3
run_config.xml file 3,35
atsSource section 3, 38
atsTarget section 3, 39
engine section 3, 37
runtime environment 9

S

status 12

T

Transformation Engine
configuration 3

Index

transformation run 2
defining 3
removing 15
specifying parameters 3, 35
status 12
status values 29
type entry 44

U

URL entry 44
user entry 44

wW

workDataSource entry 43
working database 41
configuring 8

X

XMP file

defining data conversions 3
xmpPath entry

in atsSource section 39

in atsTarget section 40

Modulant Curtana Developer’s Guide 49

	List of Figures
	List of Tables
	List of Examples
	Preface
	Who Should Read this Guide?
	Conventions Used in this Guide
	What’s in this Guide?
	Related Documents

	1� Introduction
	The Data Transformation Process
	Specifying a Transformation Job

	The Life Cycle of a Queued Job

	2� Using the Lifecycle Manager API
	Configuring the Modulant Curtana Transformation Engine
	Setting Up the Runtime Environment
	Invoking the Lifecycle Manager
	Adding a Job to the Queue
	Getting the Status of a Job
	Removing a Job from the Queue
	Using the Lifecycle Manager from the Command Line
	Running the Lifecycle Queue
	Adding a Transformation Job to the Queue
	Getting the Status of a Queued Job
	Removing a Transformation Job from the Queue

	3� Lifecycle Manager API Reference
	LifecycleManager Class
	addJob()
	getInstance()
	getJobUpdate()
	removeJob()

	QueuedJobInfo Interface
	getConfigFilePath()
	getErrorFilePath()
	getID()
	getRunEndTime()
	getRunStartTime()
	getStatus()
	getStatusCode()
	getStatusMessage()
	getSubmitTime()

	LifecycleQueue Class

	A� run_config.xml Reference
	section name="engine"
	section name="atsSource"
	section name="atsTarget"

	B� Configuring Database Connections
	Editing config.xml
	Editing datasources.xml
	Specifying the Work Data Source
	Specifying the Control Data Source

	Index

