
9

2
Installing and Configuring the Runtime
Processes 2

The first step in deploying a J2EE application is setting up the production environment
on the appropriate hosts. This involves installing all necessary PowerTier runtime
processes and tools, in preparation for deploying your components. If you already
have a development installation of PowerTier where you will deploy your application
components, you can skip to “Configuring PowerTier Servers” on page 11.

To set up a production system, you must install the required runtime processes on the
proper host machines, including any databases and client programs your application
will use. To guide you through this process, this chapter contains the following
sections:

� Installing the PowerTier Tools

� Configuring PowerTier Servers

� Defining Clusters of Servers

� Configuring the Web Container

� Configuring the Client Container

� Configuring Containers to Use J2EE Services

� Deploying Security Features

10 Deployment Guide

2 Installing and Configuring the Runtime Processes

Installing the PowerTier Tools
To configure and deploy PowerTier EJB, Web, and client containers, you must install a
production version of PowerTier on each node. A production system includes the
PowerTier runtime processes listed in Table 1 on page 3 and the following
management and configuration tools:

� For managing clusters of PowerTier servers: the Command Center and ps-agent
(the bootstrap command that handles communication between the Command
Center and PowerTier servers).

� For managing and configuring collocated and standalone servlet containers: the
administration tools ps-webadm and ps-webgui.

� For deploying J2EE components: ps-deploy, ps-makeejb, ps-makeweb, and an
XML editor, such as XML Spy, for customizing configuration files and deployment
descriptors.

To install a production version of PowerTier on each host machine:

1. Start the PowerTier installation program.

2. Select:
� The PowerTier J2EE application server, which hosts the EJB container, and

collocated JSP and servlet engines.
The installation process sets up a default pantry (the directory that will hold
deployed JAR files), and places the location of the pantry in your CLASSPATH.

� The Command Center management agent (ps-agent).
On Windows NT systems, the installation process sets ps-agent to run as an
NT service. You can specify whether you want this service to run
automatically, or whether you want to start it yourself.

� The PowerTier deployment tools.
� If your application includes Web components, such as JSPs or servlets, install

the Servlet Engine Plug-in for your Web server.
The installation also includes a Java compiler and a JRE (Java runtime
environment).

3. After you install PowerTier, follow the instructions in the Installation and
Configuration Guide to ensure that the PowerTier J2EE server has been properly
configured to work with your databases and database client-side libraries.

The installation process sets up the required directory structure, and places libraries
and configuration files in the proper locations. For further instructions, information
about licenses, and a list of the directories you will find in your installation, see the
Installation and Configuration Guide and the Web Application Development Guide.

11

Configuring PowerTier Servers

Configuring PowerTier Servers
You use the Command Center’s Web interface to configure most aspects of PowerTier
J2EE servers and clusters of servers. To configure J2EE servers, you need the following
information from your production environment:

� Resource locations (naming service, URLs, etc.)

� EJB references

� Environment entries

� Security information, as listed in “Deploying Security Features” on page 22

This section describes basic server configuration in the following topics:

� Server Configuration Files

� Using the Command Center to Configure Servers

� Defining Servers

� Defining Clusters of Servers

Server Configuration Files
PowerTier servers use the following configuration files:

� the server configuration (.ptc) file
The PowerTier tools ps-gen and ps-makeejb generate initial server configuration
files, using the name of the project: projectName.ptc.

� the container configuration file (pt-config.xml)
If your application uses J2EE services, you need both a .ptc file and pt-config.xml.
For more information, see “Configuring Containers to Use J2EE Services” on
page 19.

� the Web server plug-in configuration file (ps-pi.conf)

� the servlet container properties file (se.properties)

When you configure PowerTier J2EE servers, the Command Center saves the
configuration information in a separate .ptc file for each server (serverName.ptc), in
the config directory of the PowerTier installation on that server’s host. If necessary,
during development you can edit the .ptc file yourself to make minor changes, but
Persistence recommends that you use the Command Center whenever possible. For
more information about the format of the .ptc file, see the Reference Guide.

12 Deployment Guide

2 Installing and Configuring the Runtime Processes

You can run the Command Center on one host machine to configure local or remote
servers in your network. If your developers have provided an initial .ptc file, you must
place this file in the config directory of the PowerTier installation on the machine
where you will run the Command Center.

Using the Command Center to Configure Servers
The Command Center uses SNMP (simple network management protocol) to
communicate with PowerTier servers. Each individual server must have a unique
SNMP port number. When you group PowerTier servers in a cluster, each member
server of that cluster uses the same SNMP port. When you configure PowerTier
servers, you specify the SNMP port. Figure 5 shows how the Command Center
communicates with PowerTier servers.

13

Configuring PowerTier Servers

Figure 5. Command Center Connections to PowerTier Servers

You must start ps-agent on each host computer that contains one or more PowerTier
J2EE servers. Each ps-agent communicates with the others, allowing you to use a
single Command Center to configure and control all of the PowerTier J2EE servers.

To start the Command Center:

1. If you did not set up ps-agent to run automatically (during the installation
process), you must start it before running the Command Center. To start ps-agent,
do one of the following:
� On Windows NT, open the Control Panel and then open the Services dialog.

Select PowerTier Agent and then click Start.

14 Deployment Guide

2 Installing and Configuring the Runtime Processes

� On either UNIX or Windows, enter the following command:
ps-agent -f configFile -p port

The default configuration file is ps-agent.ini. The default port is 9080.
When ps-agent starts, it creates a list of the .ptc files in the config directory. As
ps-agent runs, it uses this list to determine which servers the Command Center
will manage. Do not change or delete any of these files while either ps-agent or the
Command Center is running.

2. Open a browser window.

3. Enter the URL http://hostName:portName to start the Command Center.
Use the same portName you used when you started ps-agent.

Defining Servers
For eachPowerTier server in your system, you must provide the following
information:

� The server’s name, the host name, and a description to identify that server.

� Database connection pools, including the name, database type, and login
information.

� Naming service information, including the naming service your applications uses
and the location of the ORB. By default, PowerTier uses COSNaming, but you can
also use a JNDI-compliant implementation of LDAP. For examples of using LDAP,
see the PowerTier Server and EJB Development Guide and the Client Development
Guide.

Note: If you use COSNaming, you can use ps-tnameserv during unit testing, but for
production, Persistence recommends that you use jorbd or LDAP. The jorbd
naming service is persistent, in contrast to ps-tnameserv, which is a transient
naming service. If the jorbd naming service fails, and you have configured it to do
so, another instance automatically starts and continues serving client requests.

� JAR files for this server to load, including the name of each JAR file, a description
to identify that file, and the connection pool to use for the components in that JAR.

You can also use the Command Center to specify additional information about your
PowerTier servers, including:

� Java Virtual Machine information, including the version and the path (if you use a
JVM other than the default one supplied with PowerTier).

15

Configuring PowerTier Servers

� Cache settings, including the overall cache-clearing policy, the number of hash
buckets in the shared cache, and the number of hash buckets in the transactional
cache. For recommendations, see “Configuring the Cache” on page 46.

� Whether you want to enable logging of server messages. For more information,
see “Monitoring Cache Usage” on page 48.

� EJB components in your application, including:
� the names of your entity beans
� the enterprise beans in each JAR file
� cache-clearing policies and database connections pools for each bean

After you configure your servers, you will want to test your configurations. For
instructions, see “Starting PowerTier Servers and Clusters of Servers” on page 38.

Defining Clusters of Servers
You can use the Command Center to combine PowerTier servers into clusters for load
balancing, cache synchronization, failover, and failback. When you configure a cluster,
you configure all of its member servers at the same time. To perform this
configuration, you need to know how your application implements these features. For
detailed information about load balancing, cache synchronization, failover, and
failback, see the PowerTier Server and EJB Development Guide.

When you assign a server to a cluster, the Command Center prefixes the name of the
cluster to the ServerName element in the member server’s .ptc file – for example,
Bank.HomeOffice indicates the HomeOffice server in the Bank cluster.

To define a cluster of servers, you provide the following information:

� The name of the cluster, and the member servers in the cluster.

� For each member server: the name of the server, its host name or IP address, and
an optional description of that server.

� Cache settings, database connection pools, naming service, and JVM information
for the cluster as a whole, and optionally for individual servers.
If your application requires cache-clearing access to the naming service, you might
need a more robust naming service than jorbd, such as LDAP. The Netscape
Directory Server provides LDAP load balancing and failover across machines.

� Cache synchronization information, including which messaging system your
application uses and what classes your application uses to implement cache
synchronization.

� Whether to enable transparent failover and failback for this cluster and what
classes your application uses to implement failover.

16 Deployment Guide

2 Installing and Configuring the Runtime Processes

For full instructions and explanations of the cluster configuration values you must
specify, see the Command Center Guide.

Configuring the Web Container
If your application uses the PowerTier Servlet Engine, make sure you install the Web
server plug-in for your Web server. The combination of the PowerTier Servlet Engine,
the Web server plug-in, and a Web server is known as the Web container.

To configure the Web container, you use the ps-webadm command (or, if you prefer a
graphical interface, the ps-webgui command). If you run your servlet containers
collocated with a PowerTier J2EE server, you can use ps-webadm to install or remove
a Web application to or from a servlet container, and to stop a running servlet container
or delete a servlet container from your system.

You can deploy Web components, such as JSPs and Java servlets, as bundled Web
applications (packaged in WAR files), or in an open directory structure, as shown in
Example 3 on page 32. Deploying Web applications to multiple standalone servlet
containers automatically configures the Web server plug-in to support load balancing
and failover across those servlet containers.

If you use the servlet container in-process with the PowerTier J2EE server, you must
provide the PowerTier server with information about the collocated servlet containers.
To do this, you must add a JSPServletEngine element for each servlet container to the
.ptc file.

For example:
<JSPServletEngine

EngineType="ServletMill"
EngineID="D:\PowerTierHome\web\se\se"
StopTimeout="60"

</JSPServletEngine>

Installing Web Components to Servlet Containers
To install a Web application into the PowerTier Web container, you use either
ps-webadm or ps-webgui. Both administration tools do the same things; you can
choose which interface you prefer:

� The ps-webadm command provides an ASCII-based interface for configuring and
running Web applications. You can also bypass the ASCII interface and specify
some options directly on the command line.

17

Configuring the Client Container

� The ps-webgui command provides a graphical user interface for configuring and
running Web applications.

For information about using these tools, see the Web Application Development Guide.

To use Web components, you must install them to both a servlet container and the Web
server plug-in, as follows:

� To install a Web application in a servlet container, use the ps-webadm command,
as follows:
ps-webadm -install ptWarFile [-contextroot contextRoot]

-se [name | location]

When you use this command, the administration tool does the following:
a. Copies the PowerTier WAR file to the Web pantry (if it is not already there)

and expands it (if it is not already expanded).
b. Modifies the servlet container’s properties file (se.properties) to support this

Web application.
c. Modifies the MILLSE directive in the Web server plug-in's configuration file

(ps-pi.conf) to inform the plug-in about the installed application.

� To install a Web application in the Web server plug-in, use the following
command:
ps-webadm -install ptWarFile [-contextroot contextRoot] -pi [docroot]

When you use this command, the administration tool does the following:
a. Copies the PowerTier WAR file to the Web pantry (if it is not already there)

and expands it (if it is not already expanded).
b. Copies all Web components that are not in the WEB-INF or META-INF

directory to the Web server's document root directory.
c. Adds MillMount directives to the plug-in's configuration file (ps-pi.conf) for

the specified Web application.

Configuring the Client Container
The client container uses the PowerTier configuration file (pt-config.xml). This file
contains sections for each type of container: EJB, client, and Web. In addition, it
contains sections where you configure J2EE services, such as JDBC, JMS, and JavaMail.
For more information, see “Configuring Containers to Use J2EE Services” on page 19.

In the client portion (pt-client) of the pt-config.xml file, you specify the JAR files that
contain your Java client programs.

18 Deployment Guide

2 Installing and Configuring the Runtime Processes

When the ps-deploy command extracts application components from EAR and JAR
files, it creates a default pt-config.xml file with commented-out entries. You can modify
this file to provide information about your application’s environment. For a complete
description of the pt-config.xml file, see the Reference Guide.

If you use COSNaming, you must install the ORB on each client machine. To install the
ORB:

1. Copy the file ps-ejb-client.jar file from the component\client\lib directory of your
PowerTier installation to any directory on your client program's host computer.

2. Add the location of the ps-ejb-client.jar file to the CLASSPATH for the client
program.

To run your client program using the PowerTier client container, you must tell the
client container where to find your client JAR files.

To specify client JAR files:

1. Open the pt-config.xml file in an XML editor.

2. In the pt-client section, add jar-file elements with the names of your files. For
example:
<pt-client>

<jar-files>
<jar-file> BankClient.jar </jar-file>
<jar-file> bank-client.jar </jar-file>

...
</jar-files>

</pt-client>

Configuring Containers to Use J2EE Services
PowerTier supports the following J2EE services for EJB, Web, and client containers:

� JDBC – provides access to relational databases.

� JMS – provides a reliable message-passing service.

� JavaMail – allows J2EE applications to send e-mail messages.

� URL resource references – allow an application to use a hard-coded alias for a URL
that is mapped to an actual URL at runtime.

You specify information about the J2EE services your application uses in the service-
specific sections of the pt-config.xml file. If you use J2EE services, you must add a
config-file element to the .ptc file to specify the location of your pt-config.xml file.

19

Configuring Containers to Use J2EE Services

Using JDBC
To specify how your application uses JDBC, you must provide the locations of your
databases and any necessary login information. You also configure any connection
pools you want your application to use.

To use JDBC with a J2EE application, add datasource-def entries for each of your
databases to the server configuration, in one of two ways:

� Use the Command Center to specify database definitions in the .ptc file.

� Edit the pt-config.xml file.
Database definitions in the pt-config.xml file take precedence over corresponding
entries in the .ptc file.

The following example can appear in either the .ptc file or the pt-config.xml file:
<datasource-defs>

<datasource-def>
<res-ref-id> ConfigureTable_DataSource_Id </res-ref-id>
<driver> oracle.jdbc.driver.OracleDriver </driver>
<url> jdbc:oracle:thin:@charger:1521:pstest </url>
<user-name> joe </user-name>
<password> mypassword </password>
<pooling-enabled> True </pooling-enabled>
<min-conn> 1 </min-conn>
<max-conn> 5 </max-conn>
<login-timeout> 10 </login-timeout>
<idle-timeout> 30 </idle-timeout>
<checkout-timeout> 120 </checkout-timeout>

</datasource-def>
</datasource-defs>

Using JMS
To allow your application to use JMS, you provide information about the names and
locations of JMS message queues, the names of your Resource Manager Connection
Factory objects, login information to obtain connections, and any provider-specific
properties you need to set.

To use JMS with a J2EE application, add jms-connection-factory-def entries to the
pt-config.xml file. For example:
<jms-connection-factory-defs>

<jms-connection-factory-def>
<res-ref-id> MyJMS_JMSQueueConnectionFactory_Id </res-ref-id>
<provider> SpiritMessenger </provider>
<user-name> tina </user-name>

20 Deployment Guide

2 Installing and Configuring the Runtime Processes

<password> whatever </password>
<properties>

<property>
<name> messageChannel </name>
<value> stream://padres:16789 </value>

</property>
<property>

<name> providerProperty </name>
<value> propValue </value>

</property>
</properties>

</jms-connection-factory-def>
</jms-connection-factory-defs>

<jms-destination-defs>
<jms-destination-def>

<res-ref-id> DestId1 </res-ref-id>
<destination-name> TestTopic </destination-name>

</jms-destination-def>
</jms-destination-defs>

Using JavaMail
To allow your application to use JavaMail, you provide information about your
Resource Manager Connection Factory objects, login information to obtain mail
sessions, and provider-specific properties, such as your mail host and what protocol it
uses.

To use JavaMail with a J2EE application, add mail-session-def entries to the
pt-config.xml file. For example:
<mail-session-defs>

<mail-session-def>
<res-ref-id> MyJavaMail_JavaMailSession_Id </res-ref-id>
<user-name> tina </user-name>
<password> whatever </password>
<properties>

<property>
<name> mail.store.protocol </name>
<value> SMTP </value>

</property>
<property>

<name> mail.transport.protocol </name>
<value> com.acme.SMTPTRANSPORT </value>

</property>
<property>

21

Configuring Containers to Use J2EE Services

<name> mail.host </name>
<value> charger </value>

</property>
<property>

<name> mail.user </name>
<value> tina </value>

</property>
<property>

<name> mail.from </name>
<value> tina@charger </value>

</property>
<property>

<name> mail.debug </name>
<value> True </value>

</property>
</properties>

</mail-session-def>
</mail-session-defs>

Using URL Resource References
At development time, you may not know the actual URL that represents the location
of all of your application resources. You can use URL references to provide an alias that
can be mapped to the actual location at deployment time.

To specify how your application uses URL aliases, you provide information about
your Resource Manager Connection Factory objects and the URLs you want to map.

To use URL aliases with a J2EE application, add url-def entries to the pt-config.xml file.
For example:
<url-defs>

<url-def>
<res-ref-id> MyURL_URLSession_Id </res-ref-id>
<url> http://localhost:8000/index.html </url>

</url-def>
</url-defs>

22 Deployment Guide

2 Installing and Configuring the Runtime Processes

Deploying Security Features
To deploy a secure application, you must complete the following security tasks:

� Creating and Distributing Certificates
This includes the following tasks:
� installing the CA on a secure host computer
� creating the CA's trusted certificate
� creating a certificate for each PowerTier server's host computer

� Configuring the Server for Security
You provide information about your application’s security policy definitions
(authentication, encryption, and port numbers) and the classes used to implement
security functions.You can use the Command Center to do this or you can edit the
.ptc file directly.

� Protecting Enterprise Beans at Deployment
This includes the following tasks:
� Defining security roles: you declare all security roles when deploying your

server; you need not compile any security role information into your
application.

� Modifying deployment descriptors to specify security information for JAR
and WAR files, individual enterprise beans, and Web application resources.

� Providing Client-Program Security
This includes the following tasks:
� Providing the trusted CA certificate file, so your client program can validate

the digital signature on the PowerTier server's certificate.
� For Web clients, using your Web server's SSL (or equivalent features) to

protect servlets.

� Identifying Users
This includes the following tasks:
� Adding user information to the user-accounts file and the access-control list.
� Associating security roles with users in the user-role mapping file.

For specific instructions for each of these tasks, consult the Security Guide and the Web
Application Development Guide.

25

3
Configuring and Packaging Application
Components 3

Once you have installed the necessary runtime processes on your production hosts,
you can install and configure the application components. This involves unpackaging
EAR, JAR, and WAR files; modifying deployment descriptors; and repackaging your
components for deployment.

This section contains the following topics that describe deploying application
components:

� J2EE Application Structure and Deployment Tools

� Creating the Application Directory Structure (Unpackaging)

� Deploying EJB Components

� Deploying Web Components

� Deploying Client Programs

� Configuring PowerTier Containers to Use Your Components

26 Deployment Guide

3 Configuring and Packaging Application Components

J2EE Application Structure and Deployment Tools
Each type of component in a J2EE application is packaged in its own type of archive
file. In addition, each type of component requires its own deployment descriptors.
Table 2 shows the types of archive files and the associated deployment descriptors.

Note: The PowerTier server does not recognize EAR files in this release. Therefore, you must
package EJB components and Java client programs into JAR files, and Web
components into WAR files to work with PowerTier containers.

PowerTier provides the following deployment tools to work with J2EE application
components:

� ps-deploy extracts the contents of EAR, JAR, and WAR files and creates or updates
deployment descriptors for the extracted components.

� ps-makeejb compiles and packages EJB components and Java client code for
deployment.

� ps-makeweb builds and packages Web components for deployment.

You use ps-deploy when you have application components packaged in J2EE archive
files. Often these components come from other development groups, and can even
come from other vendors. When you receive these files, you need to extract their
contents to customize the deployment descriptors and configuration files to reflect
your runtime environment.

The ps-deploy command enables you to place both EJB and Web components in a
PowerTier-specific directory structure for deployment. The ps-deploy command uses
the ps-makeejb and ps-makeweb commands to create or update entries in deployment

Table 2. J2EE Component Packaging

Component Type Archive Deployment Descriptors

Entire J2EE application EAR application.xml (J2EE-standard)

EJBs JAR ejb-jar.xml (J2EE-standard)
pt-jar.xml (PowerTier-specific)

Web components WAR war.xml (J2EE-standard)
ptwar.xml (PowerTier-specific)

Java client programs JAR application-client.xml (J2EE-standard)
pt-application-client.xml (PowerTier-specific)

27

Creating the Application Directory Structure (Unpackaging)

descriptors and configuration files based on the elements extracted from JAR or WAR
files. You can also use these tools to update and repackage modified application
components.

Creating the Application Directory Structure (Unpackaging)
When you receive an EAR file from a bean provider, you must extract the files from the
archived modules, modify the deployment descriptors, generate container-adaptor
code (if it has not already been generated), and re-package your components for
deployment.

Figure 6 shows the internal structure of a sample EAR file.

Figure 6. J2EE Enterprise Application Structure

To extract the components of this EAR file to a standard directory structure:

1. Enter the following command:
ps-deploy MyJ2EEApp.ear

The ps-deploy command creates separate project directories for each module listed
in the application.xml descriptor file, as shown in Example 1.

28 Deployment Guide

3 Configuring and Packaging Application Components

2. To specify a root directory other than the current directory for the extracted files,
use ps-deploy with the -outputDir option; for example:
ps-deploy MyJ2EEApp.ear -outputDir C:\J2EEApps\MyAppRoot

Example 1. Files Extracted from an Enterprise Archive
MyJ2EEApp\ � current directory (application root)

application.xml � application DD extracted from EAR file
ejb\ � generated repository for EJB modules

ATM\ � generated project directory for an EJB module
ejb-jar.xml � EJB DD extracted from JAR file
pt-jar.xml � PowerTier DD generated by ps-deploy
ps-makeejb.cfg � generated EJB project configuration file
PSInternal\ � generated directory for JAR contents

…*.class
META-INF\

ejb-jar.xml

java\ � repository for Java modules in EAR file
MyClient\ � generated Java module project directory

application-client.xml� application client DD extracted from JAR
pt-application-client.xml� PT client DD generated by ps-deploy
PSInternal\ � generated directory for JAR contents

…*.class
META-INF\

application-client.xml
MANIFEST.MF

web\ � generated directory for Java modules
Sample\ � project directory generated for a Web module

*.jsp � Web application files
*.html � static HTML pages
images*.gif � image files
*.class � client-side applets, beans, classes
WEB-INF\

web.xml � standard Web deployment descriptor
ptwar.xml � PowerTier Web deployment descriptor
lib*.jar � extracted JAR files
classes\…*.class � servlets and helper classes

server\
pt-config.xml � generated PowerTier configuration file
MyJ2EEApp.ptc � generated PowerTier server configuration file

29

Deploying EJB Components

If you want to extract the application components into the standard directory structure
without creating or updating deployment descriptors, you can use ps-deploy with the
-extractOnly option. If you do this, you can use the ps-makeejb and ps-makeweb
commands to create deployment descriptors for your EJB, Web, and Java client
components, as described in the following sections.

Deploying EJB Components
EJB components require two deployment descriptors: ejb-jar.xml and pt-jar.xml if you
are deploying them in a PowerTier container. When you extract the contents of an EJB
JAR file, ps-deploy creates default versions of these descriptors, or updates existing
ones, based on the components it extracts.

Modifying deployment descriptors can include resolving external dependencies, and
replacing the default values in commented-out elements. When you make any changes
to deployment descriptors, Persistence recommends that you use the -validateDD
option of ps-makeejb before repackaging your components.

To deploy EJB components:

1. If you do not have deployment descriptors, use the following command to create
them:
ps-makeejb -createDD

1. To deploy components extracted from a JAR file, verify the following information
in the deployment descriptors, and edit the descriptor files if necessary:
� Resource locations (naming service, URLS, etc.)

resource-ref entries in the ejb-jar.xml file specify the resource manager
connection factory (RMCF) references in your application. Corresponding
resource-ref entries in the pt-jar.xml file include additional PowerTier-specific
information about the resources your application uses. For more information,
see “Using J2EE Services with EJB Components” on page 31.

� EJB references
ejb-ref entries in the ejb-jar.xml file specify the names of enterprise beans that
your entity and session beans need to reference.

� Environment entries
env-entry elements in the ejb-jar.xml file specify environment values for your
enterprise beans.

30 Deployment Guide

3 Configuring and Packaging Application Components

� Security
If you are deploying third-party beans in a secure application, you must
include them in secure-resource-def entries in the pt-jar.xml file.

For information about modifying specific sections of the deployment descriptors,
see the PowerTier Server and EJB Development Guide. For details of deployment
descriptor syntax, see the Reference Guide.

2. To validate your changes, run the following command:
ps-makeejb -validateDD

3. To generate container-adapter code and package your EJB components into a
PowerTier-specific JAR, use the following command:
ps-makeejb -ptJar MyEjbJar

This command does the following things:
a. Generates the remote and home interface implementations and places them

in the proper locations.
b. Generates the RMI stubs and skeletons.
c. Creates a new PowerTier JAR file; in this case, MyEjbJar-pt.jar.

4. Copy the PowerTier-specific JAR file to the Persistence pantry for further testing
or deployment.

5. To test your application, start the server, as described in “Starting PowerTier
Servers and Clusters of Servers” on page 38.

Example 2 shows the project directory after you run ps-makeejb -ptJar for a project
called ATM.

Example 2. EJB Component Directory After ps-makeejb
ejb\ � generated repository for EJB modules

ATM\ � generated project directory for an EJB module
ejb-jar.xml � EJB DD extracted by ps-deploy
pt-jar.xml � PowerTier DD generated by ps-makeejb -createDD
ps-makeejb.cfg � configuration file generated by ps-deploy
ATM.jar � generated by ps-makeejb -ejbJar
ATM-pt.jar � generated by ps-makeejb -ptJar
ATM-client.jar � generated by ps-makeejb -clientJar
PSInternal\ � generated by ps-deploy, now including PSImpl

…*.class � classes and RMI stubs and skeletons
META-INF\

ejb-jar.xml

31

Deploying Web Components

Using J2EE Services with EJB Components
If your EJB components use J2EE services, such as JDBC or JavaMail, you must specify
this in the EJB deployment descriptors, as follows:

1. To use JDBC, add resource-ref entries to the ejb-jar.xml and pt-jar.xml deployment
descriptors.

2. To use JMS or URL aliases, add resource-reference-def entries to the pt-jar.xml
deployment descriptor.

3. If your application uses JavaMail, implemented with session beans, add
resource-ref entries to session elements for those session beans in the ejb-jar.xml
deployment descriptor.

For examples, see the PowerTier Server and EJB Development Guide.

Deploying Web Components
A PowerTier Web application has the following structure:
webAppDir\

*.jsp � Web application files
*.html � static HTML pages
images*.gif � image files
*.class � client-side applets, beans, classes
WEB-INF\

web.xml � standard Web deployment descriptor
ptwar.xml � PowerTier Web deployment descriptor
lib*.jar � libraries in JAR files
classes\…*.class � servlets and helper classes

When you use the ps-deploy command to extract Web components from an EAR or
WAR file, it places the components in the proper places in this structure. You can use
the ps-makeweb command to create this structure from files of your own. For details,
see the Web Application Development Guide.

Web components require two deployment descriptors: web.xml and ptwar.xml if you
are deploying them in PowerTier servlet and JSP containers. When you extract the
contents of a WAR file, ps-deploy calls ps-makeweb to create default versions of these
descriptors, or update existing ones, based on the extracted components. Unless you
specify otherwise (using the -noValidate option), ps-makeweb validates the contents of
your deployment descriptors against the corresponding DTDs (document type
definitions).

32 Deployment Guide

3 Configuring and Packaging Application Components

You deploy PowerTier Web components to the Web pantry. Both standalone and
collocated servlet containers use this location. The %PERSISTENCE_WEB_PANTRY%
environment variable specifies the default Web pantry. If this variable is not defined,
the Web container uses the web\apps subdirectory of your PowerTier installation.

Note: By default, %PERSISTENCE_WEB_PANTRY% is not defined. For security reasons, it is
important that you do not include the Web pantry in the CLASSPATH.

To deploy Web components:

1. If you do not have deployment descriptors, use the following command to create
them:
ps-makeweb -all

2. Use the following command to update servlet and servlet-mapping elements for
the precompiled servlets in your Web application directory:
ps-makeweb -updateDD

3. In each project-specific directory, edit the web.xml and ptwar.xml files as needed.
For examples of modifying specific sections of the deployment descriptors, see the
Web Application Development Guide. For details of deployment descriptor syntax,
see the Reference Guide.

4. To repackage the Web application and copy the files to the Web pantry, use the
following command:
ps-makeweb -all

If you prefer, you can deploy your Web application using an “open” directory
structure (as shown in Example 3), rather than repackaging it into a WAR file.

5. To install this Web application into a particular servlet container, run ps-webadm
or ps-webgui. For further instructions, see “Installing Web Components to Servlet
Containers” on page 16.

Example 3 shows the project directory after you run ps-makeweb -all on a Web
application called Sample.

Example 3. Web Components Directory After ps-deploy and ps-makeweb
web\ � generated directory by ps-deploy

Sample\ � project directory generated by ps-deploy
Sample-pt.war � WAR file generated by ps-makeweb -all

*.jsp � Web application files
*.html � static HTML pages
images*.gif � image files
*.class � client-side applets, beans, classes

33

Deploying Client Programs

WEB-INF\
web.xml � standard Web deployment descriptor
ptwar.xml � PowerTier Web deployment descriptor
lib*.jar � extracted JAR files
classes\…*.class � servlets and helper classes

Using J2EE Services with Web Components
If your Web components use J2EE services, such as JDBC or JavaMail, you must add
resource-ref entries for each service to the web.xml and ptwar.xml deployment
descriptors. For examples, see the Web Application Development Guide.

Deploying Client Programs
Standalone Java client programs require two deployment descriptors:
application-client.xml and pt-application-client.xml if you are deploying them in a
PowerTier container. When you extract Java client components from a JAR file,
ps-deploy creates default versions of these descriptors, or updates existing ones, based
on the components it extracts.

After you modify the generated deployment descriptors, Persistence recommends that
you use the -validateClientDD option of ps-makeejb before repackaging your
components.

To deploy Java client programs:

1. If you do not have deployment descriptors, use the following command to create
them:
ps-makeejb -createClientDD

This command creates default deployment descriptors, and a default container
configuration file (pt-config.xml) if you do not already have one.

2. Using an XML editor, make any necessary changes to the deployment descriptor
files. For example, you might need to include entries to specify Application
Naming Environment settings.
For examples of modifying specific sections of the deployment descriptors, see the
Client Development Guide. For details of deployment descriptor syntax, see the
Reference Guide.

34 Deployment Guide

3 Configuring and Packaging Application Components

3. If you modify the deployment descriptors or the container configuration file, use
the following command to validate your changes:
ps-makeejb -validateClientDD [-ptConfigXml My-pt-config.xml]

If you have a pt-config.xml file, specify it here to include it in the validation
process.

4. If your client program does not include an XML parser, use the following
command to serialize the client deployment descriptor files and the container
configuration file:
ps-makeejb -serializeClientDD

This command produces a serialized deployment descriptor that combines both
deployment descriptors (application-client.xml and pt-application-client.xml) and
your PowerTier configuration file (pt-config.xml) into a single file, with the default
name application-client.ser. If you serialize your deployment descriptors, you
must use the ps.client.descriptor property value to specify the location of the .ser
file when deploying your application client.

5. To package your application client into a PowerTier JAR file, use the following
command:
ps-makeejb -clientJar

This command creates a client JAR file called project-client.jar, which contains:
� The class that contains the client’s main method.
� Any additional classes used by the client.
� Any other resources used by the client (such as images in gif or jpeg format).
� The application-client.xml deployment descriptor.
� The JAR file’s manifest (MANIFEST.MF), which contains an entry that identifies

the client's main class.

6. Copy the client JAR file to a location in your CLASSPATH, or to the pantry directory
specified in your pt-config.xml file.

7. To test your application client, start the PowerTier client container, as described in
“Starting Java Client Programs” on page 41.

Example 4 shows the client directory for an application called MyClient after you run
ps-makeejb with the options listed.

Example 4. Java Client Directory After ps-makeejb
java\ � repository for Java modules in EAR file

MyClient\ � generated by ps-deploy
application-client.xml � from ps-makeejb -createClientDD
pt-application-client.xml� from ps-makeejb -createClientDD
pt-config.xml � from ps-makeejb -createClientDD
application-client.ser � from ps-makeejb -serializeClientDD

� (optional)

35

Configuring PowerTier Containers to Use Your Components

PSInternal\ � generated by ps-deploy
…*.class
META-INF\

application-client.xml
MANIFEST.MF

Using J2EE Services with Client Programs
If your client program uses J2EE services, such as JDBC or JavaMail, you must specify
this in the client deployment descriptors, as follows:

1. To use JDBC, add resource-ref entries to the deployment descriptors
application-client.xml and pt-application-client.xml.

2. To use JMS, JavaMail, or URL aliases, Add resource-ref entries for each service to
the application-client.xml descriptor.

For examples, see the Client Development Guide.

Configuring PowerTier Containers to Use Your Components
When your application components are ready for deployment, you must tell the
PowerTier containers where to find the components. To do this, you modify the
configuration files for each container. If the bean provider already specified this
information, you might not have to do any further configuration at this point.

Related Information
See the following sources for related information:

Topic Location

Configuring PowerTier containers Chapter 2, “Installing and Configuring the
Runtime Processes”

Running the PowerTier containers Chapter 4, “Starting the Runtime Processes”

36 Deployment Guide

3 Configuring and Packaging Application Components

	Installing and Configuring the Runtime Processes
	Installing the PowerTier Tools
	Configuring PowerTier Servers
	Server Configuration Files
	Using the Command Center to Configure Servers
	Defining Servers
	Defining Clusters of Servers

	Configuring the Web Container
	Installing Web Components to Servlet Containers

	Configuring the Client Container
	Configuring Containers to Use J2EE Services
	Using JDBC
	Using JMS
	Using JavaMail
	Using URL Resource References

	Deploying Security Features

	Configuring and Packaging Application Components
	J2EE Application Structure and Deployment Tools
	Creating the Application Directory Structure (Unpackaging)
	Deploying EJB Components
	Using J2EE Services with EJB Components

	Deploying Web Components
	Using J2EE Services with Web Components

	Deploying Client Programs
	Using J2EE Services with Client Programs

	Configuring PowerTier Containers to Use Your Components

